Recent advances in label-free imaging techniques based on nonlinear optical microscopy to reveal the heterogeneity of the tumor microenvironment.

IF 4.9 Q1 BIOPHYSICS Biophysical reviews Pub Date : 2024-09-28 eCollection Date: 2024-10-01 DOI:10.1007/s12551-024-01229-y
Ishita Chakraborty, Nirmal Mazumder, Ankur Gogoi, Ming-Chi Chen, Guan Yu Zhuo
{"title":"Recent advances in label-free imaging techniques based on nonlinear optical microscopy to reveal the heterogeneity of the tumor microenvironment.","authors":"Ishita Chakraborty, Nirmal Mazumder, Ankur Gogoi, Ming-Chi Chen, Guan Yu Zhuo","doi":"10.1007/s12551-024-01229-y","DOIUrl":null,"url":null,"abstract":"<p><p>The tumor microenvironment (TME) is a complex and dynamic network that significantly influences cancer progression. Understanding its intricate components, including the extracellular matrix (ECM), stromal cells, immune cells, and vascular endothelial cells, is crucial for developing effective cancer therapies. Conventional diagnostic methods, while essential, have limitations in sensitivity, specificity, and invasiveness. Label-free multimodal nonlinear optical (MNLO) microscopy offers a promising alternative, enabling detailed imaging without external labels. Techniques such as second harmonic generation (SHG), third harmonic generation (THG), coherent anti-Stokes Raman scattering (CARS), and two-photon fluorescence (TPF) provide complementary insights into the TME. SHG is particularly effective for imaging collagen fibers, while CARS highlights lipid-rich structures, and THG and TPF offer high-resolution imaging of cellular and subcellular structures. These modalities reveal crucial information about tumor progression, including changes in collagen organization and lipid metabolism, and allow for the study of cellular interactions and ECM remodeling. Multimodal setups, combining SHG, CARS, THG, and TPF, enable comprehensive analysis of the TME, facilitating the identification of early-stage cancerous changes and tracking of tumor progression. Despite the advantages of MNLO microscopy, such as reduced photodamage and the ability to image live tissues, challenges remain, including the complexity and cost of the setups. Addressing these challenges through technological advancements and optimization can enhance the applicability of MNLO microscopy in clinical diagnostics and cancer research, ultimately contributing to improved cancer diagnosis, prognosis, and treatment strategies.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 5","pages":"581-590"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-024-01229-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The tumor microenvironment (TME) is a complex and dynamic network that significantly influences cancer progression. Understanding its intricate components, including the extracellular matrix (ECM), stromal cells, immune cells, and vascular endothelial cells, is crucial for developing effective cancer therapies. Conventional diagnostic methods, while essential, have limitations in sensitivity, specificity, and invasiveness. Label-free multimodal nonlinear optical (MNLO) microscopy offers a promising alternative, enabling detailed imaging without external labels. Techniques such as second harmonic generation (SHG), third harmonic generation (THG), coherent anti-Stokes Raman scattering (CARS), and two-photon fluorescence (TPF) provide complementary insights into the TME. SHG is particularly effective for imaging collagen fibers, while CARS highlights lipid-rich structures, and THG and TPF offer high-resolution imaging of cellular and subcellular structures. These modalities reveal crucial information about tumor progression, including changes in collagen organization and lipid metabolism, and allow for the study of cellular interactions and ECM remodeling. Multimodal setups, combining SHG, CARS, THG, and TPF, enable comprehensive analysis of the TME, facilitating the identification of early-stage cancerous changes and tracking of tumor progression. Despite the advantages of MNLO microscopy, such as reduced photodamage and the ability to image live tissues, challenges remain, including the complexity and cost of the setups. Addressing these challenges through technological advancements and optimization can enhance the applicability of MNLO microscopy in clinical diagnostics and cancer research, ultimately contributing to improved cancer diagnosis, prognosis, and treatment strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非线性光学显微镜的无标记成像技术的最新进展揭示肿瘤微环境的异质性。
肿瘤微环境(tumor microenvironment, TME)是一个复杂的动态网络,对肿瘤的进展具有重要影响。了解其复杂的组成部分,包括细胞外基质(ECM)、基质细胞、免疫细胞和血管内皮细胞,对于开发有效的癌症治疗方法至关重要。传统的诊断方法虽然必不可少,但在敏感性、特异性和侵入性方面存在局限性。无标签的多模态非线性光学(MNLO)显微镜提供了一种有前途的替代方案,无需外部标签即可实现详细成像。二次谐波产生(SHG)、三次谐波产生(THG)、相干反斯托克斯拉曼散射(CARS)和双光子荧光(TPF)等技术为TME提供了补充见解。SHG对胶原纤维成像特别有效,而CARS突出富含脂质的结构,THG和TPF提供细胞和亚细胞结构的高分辨率成像。这些模式揭示了肿瘤进展的关键信息,包括胶原组织和脂质代谢的变化,并允许研究细胞相互作用和ECM重塑。结合SHG、CARS、THG和TPF的多模式设置,可以对TME进行综合分析,有助于早期癌症变化的识别和肿瘤进展的跟踪。尽管MNLO显微镜具有减少光损伤和成像活体组织的能力等优点,但仍然存在挑战,包括设置的复杂性和成本。通过技术进步和优化来解决这些挑战,可以提高MNLO显微镜在临床诊断和癌症研究中的适用性,最终有助于改善癌症诊断、预后和治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
期刊最新文献
Biophysical Reviews: the IUPAB journal promoting biophysics on an international stage. Probing living cell dynamics and molecular interactions using atomic force microscopy. Biophysical assays to test cellular mechanosensing: moving towards high throughput. Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing. Editorial to the topical issue: the 7th Nanoengineering for Mechanobiology Symposium 2024 Camogli, Genoa, Italy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1