{"title":"Female mice exhibit similar long-term plasticity and microglial properties between the dorsal and ventral hippocampal poles","authors":"Eleonora De Felice , Bianca Caroline Bobotis , Giovanna Rigillo , Mohammadparsa Khakpour , Elisa Gonçalves de Andrade , Cristina Benatti , Antonietta Vilella , Fabio Tascedda , Cristina Limatola , Marie-Ève Tremblay , Silvia Alboni , Laura Maggi","doi":"10.1016/j.bbi.2024.11.034","DOIUrl":null,"url":null,"abstract":"<div><div>The hippocampus is a heterogenous structure that exhibits functional segregation along its longitudinal axis. We recently showed that in male mice, microglia, the brain’s resident immune cells, differ between the dorsal (DH) and ventral (VH) hippocampus, impacting long-term potentiation (LTP) mainly through the CX3CL1-CX3CR1 signaling. Here, we assessed the specific features of the hippocampal poles in female mice, demonstrating a similar LTP amplitude in VH and DH in both control and <em>Cx3cr1</em> knock-out mice. In addition, the expression levels of <em>Cx3cr1</em> and <em>Cx3cl1</em> mRNA do not differ between the two poles in control mice. These data support the critical role of the CX3CL1-CX3CR1 signaling in setting the physiological amount of plasticity, equally between poles in females. Although BDNF is higher in DH compared to VH, the expression levels of inflammatory markers involved in plasticity and of phagocytosis markers in microglia are comparable between the two poles. In accordance, microglia soma and arborization area/perimeter, and microglial ultrastructure are similar across regions, with the exception of microglial density, cells arborization solidity and circularity that are higher in DH. Understanding the molecular processes underlying microglial sex differences and their potential implications for plasticity in specific brain regions is of major importance in physiological and pathological conditions.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"124 ","pages":"Pages 192-204"},"PeriodicalIF":8.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159124007232","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The hippocampus is a heterogenous structure that exhibits functional segregation along its longitudinal axis. We recently showed that in male mice, microglia, the brain’s resident immune cells, differ between the dorsal (DH) and ventral (VH) hippocampus, impacting long-term potentiation (LTP) mainly through the CX3CL1-CX3CR1 signaling. Here, we assessed the specific features of the hippocampal poles in female mice, demonstrating a similar LTP amplitude in VH and DH in both control and Cx3cr1 knock-out mice. In addition, the expression levels of Cx3cr1 and Cx3cl1 mRNA do not differ between the two poles in control mice. These data support the critical role of the CX3CL1-CX3CR1 signaling in setting the physiological amount of plasticity, equally between poles in females. Although BDNF is higher in DH compared to VH, the expression levels of inflammatory markers involved in plasticity and of phagocytosis markers in microglia are comparable between the two poles. In accordance, microglia soma and arborization area/perimeter, and microglial ultrastructure are similar across regions, with the exception of microglial density, cells arborization solidity and circularity that are higher in DH. Understanding the molecular processes underlying microglial sex differences and their potential implications for plasticity in specific brain regions is of major importance in physiological and pathological conditions.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.