A Simplified Mathematical Model for Cell Proliferation in a Tissue-Engineering Scaffold.

IF 2 4区 数学 Q2 BIOLOGY Bulletin of Mathematical Biology Pub Date : 2024-11-30 DOI:10.1007/s11538-024-01390-1
Amy María Sims, Mona James, Sai Kunnatha, Shreya Srinivasan, Haniyeh Fattahpour, Ashok Joseph, Paul Joseph, Pejman Sanaei
{"title":"A Simplified Mathematical Model for Cell Proliferation in a Tissue-Engineering Scaffold.","authors":"Amy María Sims, Mona James, Sai Kunnatha, Shreya Srinivasan, Haniyeh Fattahpour, Ashok Joseph, Paul Joseph, Pejman Sanaei","doi":"10.1007/s11538-024-01390-1","DOIUrl":null,"url":null,"abstract":"<p><p>While the effects of external factors like fluid mechanical forces and scaffold geometry on tissue growth have been extensively studied, the influence of cell behavior-particularly nutrient consumption and depletion within the scaffold-has received less attention. Incorporating such factors into mathematical models allows for a more comprehensive understanding of tissue-engineering processes. This work presents a comprehensive continuum model for cell proliferation within two-dimensional tissue-engineering scaffolds. Through mathematical modeling and asymptotic analysis based on the small aspect ratio of the scaffolds, the study aims to reduce computational burdens and solve mathematical models for tissue growth within porous scaffolds. The model incorporates fluid dynamics of nutrient feed flow, nutrient transport, cell concentration, and tissue growth, considering the evolving scaffold porosity due to cell proliferation, with the crux of the work establishing the ideal pore shape for channels within the tissue-engineering scaffold to obtain the maximum tissue growth. We investigate scaffolds with specific two-dimensional initial porosity profiles, and our results show that scaffolds which are uniformly graded in porosity throughout their depth promote more tissue growth.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 1","pages":"9"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01390-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

While the effects of external factors like fluid mechanical forces and scaffold geometry on tissue growth have been extensively studied, the influence of cell behavior-particularly nutrient consumption and depletion within the scaffold-has received less attention. Incorporating such factors into mathematical models allows for a more comprehensive understanding of tissue-engineering processes. This work presents a comprehensive continuum model for cell proliferation within two-dimensional tissue-engineering scaffolds. Through mathematical modeling and asymptotic analysis based on the small aspect ratio of the scaffolds, the study aims to reduce computational burdens and solve mathematical models for tissue growth within porous scaffolds. The model incorporates fluid dynamics of nutrient feed flow, nutrient transport, cell concentration, and tissue growth, considering the evolving scaffold porosity due to cell proliferation, with the crux of the work establishing the ideal pore shape for channels within the tissue-engineering scaffold to obtain the maximum tissue growth. We investigate scaffolds with specific two-dimensional initial porosity profiles, and our results show that scaffolds which are uniformly graded in porosity throughout their depth promote more tissue growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组织工程支架细胞增殖的简化数学模型。
虽然外界因素如流体机械力和支架几何形状对组织生长的影响已经被广泛研究,但细胞行为的影响,特别是支架内营养物质的消耗和消耗,却很少受到关注。将这些因素纳入数学模型可以更全面地理解组织工程过程。这项工作提出了二维组织工程支架内细胞增殖的综合连续模型。基于多孔支架的小宽高比,通过数学建模和渐近分析,减少计算负担,求解多孔支架内组织生长的数学模型。该模型综合了营养物质供给流动、营养物质运输、细胞浓度和组织生长的流体动力学,考虑到细胞增殖引起的支架孔隙度的变化,其工作的关键是建立组织工程支架内部通道的理想孔隙形状,以获得最大的组织生长。我们研究了具有特定二维初始孔隙率的支架,结果表明,在整个深度中孔隙率均匀分级的支架促进了更多的组织生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
期刊最新文献
Epidemiological Dynamics in Populations Structured by Neighbourhoods and Households. An Asymptotic Analysis of Spike Self-Replication and Spike Nucleation of Reaction-Diffusion Patterns on Growing 1-D Domains. EAD Mechanisms in Hypertrophic Mouse Ventricular Myocytes: Insights from a Compartmentalized Mathematical Model. modelSSE: An R Package for Characterizing Infectious Disease Superspreading from Contact Tracing Data. Influence of Contact Lens Parameters on Tear Film Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1