Identifying Markov Chain Models from Time-to-Event Data: An Algebraic Approach.

IF 2 4区 数学 Q2 BIOLOGY Bulletin of Mathematical Biology Pub Date : 2024-12-03 DOI:10.1007/s11538-024-01385-y
Ovidiu Radulescu, Dima Grigoriev, Matthias Seiss, Maria Douaihy, Mounia Lagha, Edouard Bertrand
{"title":"Identifying Markov Chain Models from Time-to-Event Data: An Algebraic Approach.","authors":"Ovidiu Radulescu, Dima Grigoriev, Matthias Seiss, Maria Douaihy, Mounia Lagha, Edouard Bertrand","doi":"10.1007/s11538-024-01385-y","DOIUrl":null,"url":null,"abstract":"<p><p>Many biological and medical questions can be modeled using time-to-event data in finite-state Markov chains, with the phase-type distribution describing intervals between events. We solve the inverse problem: given a phase-type distribution, can we identify the transition rate parameters of the underlying Markov chain? For a specific class of solvable Markov models, we show this problem has a unique solution up to finite symmetry transformations, and we outline a recursive method for computing symbolic solutions for these models across any number of states. Using the Thomas decomposition technique from computer algebra, we further provide symbolic solutions for any model. Interestingly, different models with the same state count but distinct transition graphs can yield identical phase-type distributions. To distinguish among these, we propose additional properties beyond just the time to the next event. We demonstrate the method's applicability by inferring transcriptional regulation models from single-cell transcription imaging data.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 1","pages":"11"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01385-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many biological and medical questions can be modeled using time-to-event data in finite-state Markov chains, with the phase-type distribution describing intervals between events. We solve the inverse problem: given a phase-type distribution, can we identify the transition rate parameters of the underlying Markov chain? For a specific class of solvable Markov models, we show this problem has a unique solution up to finite symmetry transformations, and we outline a recursive method for computing symbolic solutions for these models across any number of states. Using the Thomas decomposition technique from computer algebra, we further provide symbolic solutions for any model. Interestingly, different models with the same state count but distinct transition graphs can yield identical phase-type distributions. To distinguish among these, we propose additional properties beyond just the time to the next event. We demonstrate the method's applicability by inferring transcriptional regulation models from single-cell transcription imaging data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从时间-事件数据中识别马尔可夫链模型:一种代数方法。
许多生物和医学问题可以使用有限状态马尔可夫链中的时间到事件数据进行建模,其中相位型分布描述事件之间的间隔。我们解决了反问题:给定相型分布,我们能否识别底层马尔可夫链的转移速率参数?对于一类特定的可解马尔可夫模型,我们证明了这个问题在有限对称变换下具有唯一解,并且我们概述了一种递归方法来计算这些模型在任意数量状态下的符号解。利用计算机代数中的托马斯分解技术,我们进一步提供了任意模型的符号解。有趣的是,具有相同状态计数但不同转换图的不同模型可以产生相同的相型分布。为了区分这些属性,我们提出了下一个事件的时间之外的其他属性。我们通过从单细胞转录成像数据推断转录调控模型来证明该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
期刊最新文献
Epidemiological Dynamics in Populations Structured by Neighbourhoods and Households. An Asymptotic Analysis of Spike Self-Replication and Spike Nucleation of Reaction-Diffusion Patterns on Growing 1-D Domains. EAD Mechanisms in Hypertrophic Mouse Ventricular Myocytes: Insights from a Compartmentalized Mathematical Model. modelSSE: An R Package for Characterizing Infectious Disease Superspreading from Contact Tracing Data. Influence of Contact Lens Parameters on Tear Film Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1