Zeyu Zheng, Peng Zhang, Yang Fu, Yihong Jiang, Jing Zhu, Fei Wang, Shaoheng Li, Zhuoru Zhang, Tong Chang, Tian Li, Min Zhang, Bai Ruan, Xiaocheng Wang
{"title":"The potential role of the SIRT1-Nrf2 signaling pathway in alleviating hidden hearing loss via antioxidant stress.","authors":"Zeyu Zheng, Peng Zhang, Yang Fu, Yihong Jiang, Jing Zhu, Fei Wang, Shaoheng Li, Zhuoru Zhang, Tong Chang, Tian Li, Min Zhang, Bai Ruan, Xiaocheng Wang","doi":"10.1002/cbin.12264","DOIUrl":null,"url":null,"abstract":"<p><p>Hidden hearing loss (HHL) is characterized by normal audiometric thresholds but impaired auditory function, particularly in noisy environments. In vivo, we employed auditory brainstem response (ABR) testing and ribbon synapses counting to assess changes in mouse hearing function, and observed the morphology of hair cells through scanning electron microscopy. SRT1720 was administered to the cochlea via round window injection. In vitro, western blot analysis and RT-qPCR were used, and Lenti-shNrf2 was used to knockdown Nrf2 expression. In addition, various oxidative stress indicators were detected by immunofluorescence, kit-based assays, and flow cytometry. ABR measurement of HHL mouse showed a significant increase in hearing threshold, as well as a decrease and delay in the I wave amplitude and latency on the first day after noise exposure. Histological observation showed a significant loss of ribbon synapses and stereocilia lodging. HHL mice exhibited oxidative stress, which was reduced by pretreatment with SRT1720. Additionally, SRT1720 could reduce hydrogen peroxide-induced oxidative stress in HEI-OC1 cells through activating the SIRT1/Nrf2 pathway. Subsequent experiments with Nrf2 knockdown confirmed the importance of this pathway. findings highlight oxidative stress as the primary contributor to HHL, with the SIRT1/Nrf2 signaling pathway emerging as a promising therapeutic target for alleviating HHL.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.12264","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hidden hearing loss (HHL) is characterized by normal audiometric thresholds but impaired auditory function, particularly in noisy environments. In vivo, we employed auditory brainstem response (ABR) testing and ribbon synapses counting to assess changes in mouse hearing function, and observed the morphology of hair cells through scanning electron microscopy. SRT1720 was administered to the cochlea via round window injection. In vitro, western blot analysis and RT-qPCR were used, and Lenti-shNrf2 was used to knockdown Nrf2 expression. In addition, various oxidative stress indicators were detected by immunofluorescence, kit-based assays, and flow cytometry. ABR measurement of HHL mouse showed a significant increase in hearing threshold, as well as a decrease and delay in the I wave amplitude and latency on the first day after noise exposure. Histological observation showed a significant loss of ribbon synapses and stereocilia lodging. HHL mice exhibited oxidative stress, which was reduced by pretreatment with SRT1720. Additionally, SRT1720 could reduce hydrogen peroxide-induced oxidative stress in HEI-OC1 cells through activating the SIRT1/Nrf2 pathway. Subsequent experiments with Nrf2 knockdown confirmed the importance of this pathway. findings highlight oxidative stress as the primary contributor to HHL, with the SIRT1/Nrf2 signaling pathway emerging as a promising therapeutic target for alleviating HHL.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.