Macrophage-to-Myofibroblast Transition Contributes to Cutaneous Scarring Formation Through the TGF-β/Smad3 Signaling Pathways.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Cell Biology International Pub Date : 2025-02-13 DOI:10.1002/cbin.70002
Yuan Jia, Yi Qin, Feng-Lai Yuan, Jie-Hong Shen
{"title":"Macrophage-to-Myofibroblast Transition Contributes to Cutaneous Scarring Formation Through the TGF-β/Smad3 Signaling Pathways.","authors":"Yuan Jia, Yi Qin, Feng-Lai Yuan, Jie-Hong Shen","doi":"10.1002/cbin.70002","DOIUrl":null,"url":null,"abstract":"<p><p>Cutaneous scarring typically arises after surgery, trauma, and infection, occurring when normal skin tissue is replaced by fibrous tissue during the healing process. Myofibroblasts have been identified as a significant contributor to this scarring. While the differentiation of fibroblasts into myofibroblasts is well-recognized as essential for wound healing and tissue repair, the mechanisms underlying the macrophage-myofibroblast transition (MMT) remain largely unexplored. This study aimed to investigate the role and potential mechanisms of MMT in cutaneous scarring. In specimens of hypertrophic scars, keloid and scleroderma, we confirmed the coexistence of MMT markers CD68 and α-smooth muscle actin (α-SMA) in areas of skin fibrosis. Additionally, most MMT cells in human cutaneous scar co-expressed the M2-type macrophage marker CD206. Fate-mapping in Lyz2-Cre/Rosa26-tdTomato mice further demonstrated that the majority of myofibroblasts in cutaneous scars were derived from bone marrow macrophages. Furthermore, higher levels of TGF-β were released from scar fibroblasts, which contributed to MMT through the Smad3 pathways. In vivo studies inhibiting Smad3 reduced MMT and scarring. Macrophage depletion with clodronate liposomes also reduced cutaneous scar formation. Our findings indicate that MMT plays a pivotal role in cutaneous scarring through the TGF-β/Smad3 pathways. Consequently, inhibiting MMT may be a novel strategy for the treatment of cutaneous scarring.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.70002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cutaneous scarring typically arises after surgery, trauma, and infection, occurring when normal skin tissue is replaced by fibrous tissue during the healing process. Myofibroblasts have been identified as a significant contributor to this scarring. While the differentiation of fibroblasts into myofibroblasts is well-recognized as essential for wound healing and tissue repair, the mechanisms underlying the macrophage-myofibroblast transition (MMT) remain largely unexplored. This study aimed to investigate the role and potential mechanisms of MMT in cutaneous scarring. In specimens of hypertrophic scars, keloid and scleroderma, we confirmed the coexistence of MMT markers CD68 and α-smooth muscle actin (α-SMA) in areas of skin fibrosis. Additionally, most MMT cells in human cutaneous scar co-expressed the M2-type macrophage marker CD206. Fate-mapping in Lyz2-Cre/Rosa26-tdTomato mice further demonstrated that the majority of myofibroblasts in cutaneous scars were derived from bone marrow macrophages. Furthermore, higher levels of TGF-β were released from scar fibroblasts, which contributed to MMT through the Smad3 pathways. In vivo studies inhibiting Smad3 reduced MMT and scarring. Macrophage depletion with clodronate liposomes also reduced cutaneous scar formation. Our findings indicate that MMT plays a pivotal role in cutaneous scarring through the TGF-β/Smad3 pathways. Consequently, inhibiting MMT may be a novel strategy for the treatment of cutaneous scarring.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biology International
Cell Biology International 生物-细胞生物学
CiteScore
7.60
自引率
0.00%
发文量
208
审稿时长
1 months
期刊介绍: Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect. These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.
期刊最新文献
Caveolae Modulate the Activity of LRRC8-Mediated VRAC by the Structural Membrane Protein Caveolin-1. Macrophage-to-Myofibroblast Transition Contributes to Cutaneous Scarring Formation Through the TGF-β/Smad3 Signaling Pathways. The Alleviative Effect of Sodium Butyrate on Dexamethasone-Induced Skeletal Muscle Atrophy. Issue Information Regulation of N-Glycosylation of CDNF on Its Protein Stability and Function in Hypoxia/Reoxygenation Model of H9C2 Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1