Chitooligosaccharide-modified PLGA-loaded PPD nanoparticles ameliorated sepsis-associated acute kidney injury via the NF-κB signaling pathway.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL Drug Development and Industrial Pharmacy Pub Date : 2024-12-01 Epub Date: 2024-12-03 DOI:10.1080/03639045.2024.2434958
Baifang Gong, Yawen Yu, Xinxin Bai, Yaping He, Tao Pan, Teng Liu, Zhixia Wang, Ke Liu, Huaying Fan
{"title":"Chitooligosaccharide-modified PLGA-loaded PPD nanoparticles ameliorated sepsis-associated acute kidney injury <i>via</i> the NF-κB signaling pathway.","authors":"Baifang Gong, Yawen Yu, Xinxin Bai, Yaping He, Tao Pan, Teng Liu, Zhixia Wang, Ke Liu, Huaying Fan","doi":"10.1080/03639045.2024.2434958","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Sepsis-associated acute kidney injury (SA-AKI) is a significant clinical challenge with high morbidity and mortality. Low bioavailability of protopanaxadiol (PPD) limits its clinical application. In this study, PPD was encapsulated with chitooligosaccharide (COS) modified polylactic-co-glycolic acid (PLGA) to develop novel nanomedicines for the treatment of SA-AKI.</p><p><strong>Methods: </strong>COS-PLGA-PPD nanoparticles were prepared by emulsified solvent evaporation method, and their properties were evaluated. <i>In vitro</i>, the anti-inflammatory and protective effects of COS-PLGA-PPD NPs were investigated in a cellular model of LPS-induced NRK-52E cells and their uptake in Caco-2 cells. Indicators of renal injury, inflammation, and NF-κB signaling pathway were evaluated by injecting LPS into SD rats and inducing SA-AKI model <i>in vivo</i>. The oral bioavailability of nanoparticles was evaluated by pharmacokinetics.</p><p><strong>Results: </strong>Compared with PPD and unmodified nanoparticles, COS-PLGA-PPD NPs were more stable, with a particle size of 139.69 nm, which enhanced the viability of NRK-52E cells, increased the uptake of Caco-2 cells, alleviated the symptoms of SA-AKI in rats, inhibited the NF-κB signaling pathway, reduced the expression of inflammatory factors, and had a bioavailability 1.7-fold that of PPD.</p><p><strong>Conclusion: </strong>COS-PLGA-PPD NPs ameliorate LPS-induced SA-AKI in rats by inhibiting the NF-κB signaling pathway, providing a basis for the treatment of SA-AKI.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1008-1020"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2434958","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Sepsis-associated acute kidney injury (SA-AKI) is a significant clinical challenge with high morbidity and mortality. Low bioavailability of protopanaxadiol (PPD) limits its clinical application. In this study, PPD was encapsulated with chitooligosaccharide (COS) modified polylactic-co-glycolic acid (PLGA) to develop novel nanomedicines for the treatment of SA-AKI.

Methods: COS-PLGA-PPD nanoparticles were prepared by emulsified solvent evaporation method, and their properties were evaluated. In vitro, the anti-inflammatory and protective effects of COS-PLGA-PPD NPs were investigated in a cellular model of LPS-induced NRK-52E cells and their uptake in Caco-2 cells. Indicators of renal injury, inflammation, and NF-κB signaling pathway were evaluated by injecting LPS into SD rats and inducing SA-AKI model in vivo. The oral bioavailability of nanoparticles was evaluated by pharmacokinetics.

Results: Compared with PPD and unmodified nanoparticles, COS-PLGA-PPD NPs were more stable, with a particle size of 139.69 nm, which enhanced the viability of NRK-52E cells, increased the uptake of Caco-2 cells, alleviated the symptoms of SA-AKI in rats, inhibited the NF-κB signaling pathway, reduced the expression of inflammatory factors, and had a bioavailability 1.7-fold that of PPD.

Conclusion: COS-PLGA-PPD NPs ameliorate LPS-induced SA-AKI in rats by inhibiting the NF-κB signaling pathway, providing a basis for the treatment of SA-AKI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
期刊最新文献
Polyethylene glycol complexed with boronophenylalanine as a potential alternative to fructose-boronophenylalanine complexation to increase cellular uptake for BNCT Treatment. Development of immediate release tablet formulations of lornoxicam with hot melt extrusion-based three-dimensional printing technology. AQbD integrated high-performance thin layer chromatographic method for quantitative estimation of Tavaborole in the presence of its degradants and the matrix of nanostructured lipid carriers. Solid dispersion of alectinib HCl: preclinical evaluation for improving bioavailability and establishing an IVIVC model. Potent antiviral action detected in Tontelea micrantha extracts against Alphavirus chikungunya.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1