Objective: Etoricoxib (ETB) is a nonsteroidal anti-inflammatory therapeutic agent. It is poorly soluble and has various gastrointestinal side effects such as bleeding and ulcers after oral administration. The present research aimed to develop an ETB-loaded mesoporous silica nanoparticle-laden gel (ETB-MSNPs) for transdermal delivery to improve therapeutic efficacy.
Methods: The ETB-MSNPs were synthesized using a precipitation and solvent evaporation technique and their optimization was performed using a Box-Behnken design. The optimized ETB-MSNPs were incorporated into a carbopol-chitosan gel and evaluated for in-vitro, ex-vivo, and in-vivo anti-inflammatory activity.
Results: The ETB-MSNPs displayed nanosize of particles with nanosize distribution and high entrapment efficiency of ETB. The FTIR and DSC studies showed that ETB was encapsulated in MSNPs. The optimized ETB-MSNPs were successfully integrated into the carbopol and chitosan gel, which exhibited excellent viscosity and spreadability. The optimized ETB-MSNPs gel exhibited a significantly higher and more sustained release of ETB compared to pure ETB gel. Optimized ETB-MSNPs gel exhibited a considerably higher anti-inflammatory effect with a significant reduction in IL-1β and TNF-α levels compared to pure ETB gel. The histopathological examination confirmed that optimized ETB-MSNPs gel did not exhibit any toxicity on the skin.
Conclusions: Based on the findings, the results suggest that the MSNPs gel has the potential as a carrier for enhancing the therapeutic efficacy of ETB through topical delivery, although further studies are needed to fully confirm its effectiveness.