A Low-Cost Microfluidic Device For the On-Line Counting of Microparticle/Bacteria.

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS ELECTROPHORESIS Pub Date : 2024-12-03 DOI:10.1002/elps.202400061
Zhen-Yu Xun, Lv Liu, Bai-Chuan Zhang, Liang-Liang Fan, Lu-Wei Zhang, Hong Zhao, Sohail Iqbal, Rana Iqtidar Shakoor, Liang Zhao
{"title":"A Low-Cost Microfluidic Device For the On-Line Counting of Microparticle/Bacteria.","authors":"Zhen-Yu Xun, Lv Liu, Bai-Chuan Zhang, Liang-Liang Fan, Lu-Wei Zhang, Hong Zhao, Sohail Iqbal, Rana Iqtidar Shakoor, Liang Zhao","doi":"10.1002/elps.202400061","DOIUrl":null,"url":null,"abstract":"<p><p>On-line counting of the microparticle/bacteria in the liquid medium has great potential in the food safety and biomedical fields. A new low-cost microfluidic device is proposed for the on-line counting of the microparticles/bacteria in the liquid medium. The gradually contracted microchannel and the viscoelastic fluid are combined to achieve the efficient elastic focusing of the particle/bacteria, which significantly improves the counting accuracy by aligning all particles/bacteria in a single position at the center of the microchannel. A simple light resistance-based counting method is designed and integrated with the microchannel, where the low-cost elements including the laser pointer, convex lens, diaphragm, and photodiode, are used to build the optical path of detection. The influence of the flow rate, the particle size, the property of fluid, and the channel structure on the focusing of the particle/bacteria are investigated by the experiment, and the counting ability of the integrated microfluidic device is validated by using different-sized microparticles and the bifidobacterium. With its simple structure, low cost, easy operation, and high efficiency, this microfluidic device is suitable for the commercial applications, such as the on-line counting of the plastic microparticle in water or the colony-forming units (CFU) of bacteria in food.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

On-line counting of the microparticle/bacteria in the liquid medium has great potential in the food safety and biomedical fields. A new low-cost microfluidic device is proposed for the on-line counting of the microparticles/bacteria in the liquid medium. The gradually contracted microchannel and the viscoelastic fluid are combined to achieve the efficient elastic focusing of the particle/bacteria, which significantly improves the counting accuracy by aligning all particles/bacteria in a single position at the center of the microchannel. A simple light resistance-based counting method is designed and integrated with the microchannel, where the low-cost elements including the laser pointer, convex lens, diaphragm, and photodiode, are used to build the optical path of detection. The influence of the flow rate, the particle size, the property of fluid, and the channel structure on the focusing of the particle/bacteria are investigated by the experiment, and the counting ability of the integrated microfluidic device is validated by using different-sized microparticles and the bifidobacterium. With its simple structure, low cost, easy operation, and high efficiency, this microfluidic device is suitable for the commercial applications, such as the on-line counting of the plastic microparticle in water or the colony-forming units (CFU) of bacteria in food.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ELECTROPHORESIS
ELECTROPHORESIS 生物-分析化学
CiteScore
6.30
自引率
13.80%
发文量
244
审稿时长
1.9 months
期刊介绍: ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.). Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences. Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases. Papers describing the application of standard electrophoretic methods will not be considered. Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics: • Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry • Single cell and subcellular analysis • Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS) • Nanoscale/nanopore DNA sequencing (next generation sequencing) • Micro- and nanoscale sample preparation • Nanoparticles and cells analyses by dielectrophoresis • Separation-based analysis using nanoparticles, nanotubes and nanowires.
期刊最新文献
One-Step Focusing of Ampholytes With Electrophoretic Mobilization: Concepts Assessed by Computer Simulation. Quantitative Endogenous Polyamine Analysis via Capillary Electrophoresis/Mass Spectrometry: Characterization and Practical Considerations. A Low-Cost Microfluidic Device For the On-Line Counting of Microparticle/Bacteria. Electromigration of Charged Analytes Through Immiscible Fluids in Multiphasic Electrophoresis. Contactless Conductivity Detection for Capillary Electrophoresis-Developments From 2020 to 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1