Development and characterization of pH-sensitive zerumbone-encapsulated liposomes for lung fibrosis via inhalation route.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY European Journal of Pharmaceutics and Biopharmaceutics Pub Date : 2025-02-01 Epub Date: 2024-11-30 DOI:10.1016/j.ejpb.2024.114599
Nourhan Elsayed, Chee Wun How, Jhi Biau Foo
{"title":"Development and characterization of pH-sensitive zerumbone-encapsulated liposomes for lung fibrosis via inhalation route.","authors":"Nourhan Elsayed, Chee Wun How, Jhi Biau Foo","doi":"10.1016/j.ejpb.2024.114599","DOIUrl":null,"url":null,"abstract":"<p><p>Zerumbone (ZER), a compound derived from the rhizome of Zingiber Zerumbet (L.) Smith, has demonstrated anti-inflammatory properties but suffers from poor water solubility, limiting its clinical application. While ZER's effects on lung inflammation are known, its role in lung fibrosis remains unexplored. Herein, ZER was encapsulated in pH-sensitive liposomes formulated with oleic acid, dipalmitoylphosphatidylcholine, and cholesterol to enhance ZER solubility and delivery to the acidic environment of lung fibrosis. The liposomes were optimized using Box-Behnken design, resulting in an average diameter of 87.8 ± 3.5 nm, a polydispersity index of 0.16 ± 0.2, and a zeta potential of -24 ± 0.32 mV. ZER release from the carrier followed zero-order kinetics and showed higher release in acidic settings. Cascade impactor and HPLC analyses confirmed that ZER liposome powder produced by freeze-drying reached stage 7, indicating effective delivery to deep lung regions. The uptake of ZER liposomes was concentration and pH-dependent, being higher in acidic conditions and greater in MRC-5 cells compared to A549 cells. Notably, ZER liposomes reduced cell migration and downregulated fibrotic markers such as fibronectin, MMP-2, and α-SMA in MRC-5 and A549 cells. This study suggests that ZER liposomes hold promise for treating lung fibrosis and merit further investigation.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114599"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2024.114599","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Zerumbone (ZER), a compound derived from the rhizome of Zingiber Zerumbet (L.) Smith, has demonstrated anti-inflammatory properties but suffers from poor water solubility, limiting its clinical application. While ZER's effects on lung inflammation are known, its role in lung fibrosis remains unexplored. Herein, ZER was encapsulated in pH-sensitive liposomes formulated with oleic acid, dipalmitoylphosphatidylcholine, and cholesterol to enhance ZER solubility and delivery to the acidic environment of lung fibrosis. The liposomes were optimized using Box-Behnken design, resulting in an average diameter of 87.8 ± 3.5 nm, a polydispersity index of 0.16 ± 0.2, and a zeta potential of -24 ± 0.32 mV. ZER release from the carrier followed zero-order kinetics and showed higher release in acidic settings. Cascade impactor and HPLC analyses confirmed that ZER liposome powder produced by freeze-drying reached stage 7, indicating effective delivery to deep lung regions. The uptake of ZER liposomes was concentration and pH-dependent, being higher in acidic conditions and greater in MRC-5 cells compared to A549 cells. Notably, ZER liposomes reduced cell migration and downregulated fibrotic markers such as fibronectin, MMP-2, and α-SMA in MRC-5 and A549 cells. This study suggests that ZER liposomes hold promise for treating lung fibrosis and merit further investigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经吸入途径治疗肺纤维化的ph敏感零骨包封脂质体的研制与表征。
Zerumbone (ZER),一种从Zerumbet (L.)生姜根茎中提取的化合物。史密斯,已证明具有抗炎特性,但其水溶性差,限制了其临床应用。虽然已知ZER对肺部炎症的影响,但其在肺纤维化中的作用仍未被探索。在这项研究中,ZER被包裹在由油酸、双棕榈酰磷脂酰胆碱和胆固醇组成的ph敏感脂质体中,以增强ZER的溶解度和向肺纤维化酸性环境的传递。采用Box-Behnken设计对脂质体进行优化,得到平均直径为87.8 ± 3.5 nm,多分散指数为0.16 ± 0.2,zeta电位为-24 ± 0.32 mV。在酸性环境下,载体中ZER的释放遵循零级动力学,并表现出较高的释放。级联冲击器和HPLC分析证实,通过冷冻干燥生产的ZER脂质体粉末达到了7级,表明有效地输送到肺深部。ZER脂质体的摄取是浓度和ph依赖性的,在酸性条件下,与A549细胞相比,MRC-5细胞中ZER脂质体的摄取更高。值得注意的是,ZER脂质体减少了MRC-5和A549细胞中的细胞迁移,下调了纤维连接蛋白、MMP-2和α-SMA等纤维化标志物。这项研究表明,ZER脂质体有望治疗肺纤维化,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
期刊最新文献
Inhibition of naproxen crystallization by polymers: The role of topology and chain length of polyvinylpyrrolidone macromolecules. Development and characterization of pH-sensitive zerumbone-encapsulated liposomes for lung fibrosis via inhalation route. Enhancing therapeutic efficacy: In vivo mechanisms and biochemical effects of lycopene encapsulated in nanomicelles for acute inflammation and lipid metabolism. Application of microarray patches for the transdermal administration of psychedelic drugs in micro-doses. Fishroesomes show intrinsic anti-inflammatory bioactivity and ability as celecoxib carriers in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1