Synthesis, DFT, ADMET and molecular docking studies of thiazole derived thiazolidinone-based chalcone derivatives: alzheimer's disease current therapies.

IF 3.2 4区 医学 Q3 CHEMISTRY, MEDICINAL Future medicinal chemistry Pub Date : 2024-12-04 DOI:10.1080/17568919.2024.2421158
Muhammad Shahid Nadeem, Jalaluddin Azam Khan, Imran Kazmi, Ehssan Moglad, Muhammad Afzal, Sami I Alzarea, Fazal Rahim, Shoaib Khan, Khushi Muhammad, Gaurav Gupta
{"title":"Synthesis, DFT, ADMET and molecular docking studies of thiazole derived thiazolidinone-based chalcone derivatives: alzheimer's disease current therapies.","authors":"Muhammad Shahid Nadeem, Jalaluddin Azam Khan, Imran Kazmi, Ehssan Moglad, Muhammad Afzal, Sami I Alzarea, Fazal Rahim, Shoaib Khan, Khushi Muhammad, Gaurav Gupta","doi":"10.1080/17568919.2024.2421158","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Nitrogen and sulfur-containing compounds are the core components utilized for synthesis of different heterocyclic moieties.</p><p><strong>Methods & results: </strong>In this research, a series of new analogues containing thiazolidinone have been synthesized <b>(1-20)</b> in order to evaluate their activity against acetylcholinesterase and butyrylcholinesterase. Potent analogues were further subjected for molecular docking in order to study their protein-ligand interactions. The highly active analogues were also subjected for DFT, which confirmed the binding properties, electrical properties, and nature with the targeted enzyme. ADMET analysis also confirms the druglikeness properties of the synthesized series.</p><p><strong>Conclusion: </strong>Analog <b>5</b> (IC<sub>50</sub> = <b>1.2 ± 0.1 µM and 1.8 ± 0.2</b> µM) exhibit excellent inhibition in comparison with the standard drug donepezil in view of inhibiting Alzheimer's disease.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1-9"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2421158","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Nitrogen and sulfur-containing compounds are the core components utilized for synthesis of different heterocyclic moieties.

Methods & results: In this research, a series of new analogues containing thiazolidinone have been synthesized (1-20) in order to evaluate their activity against acetylcholinesterase and butyrylcholinesterase. Potent analogues were further subjected for molecular docking in order to study their protein-ligand interactions. The highly active analogues were also subjected for DFT, which confirmed the binding properties, electrical properties, and nature with the targeted enzyme. ADMET analysis also confirms the druglikeness properties of the synthesized series.

Conclusion: Analog 5 (IC50 = 1.2 ± 0.1 µM and 1.8 ± 0.2 µM) exhibit excellent inhibition in comparison with the standard drug donepezil in view of inhibiting Alzheimer's disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噻唑衍生噻唑烷酮类查尔酮衍生物的合成、DFT、ADMET及分子对接研究:阿尔茨海默病目前的治疗方法。
目的:含氮和含硫化合物是合成各种杂环基团的核心成分。方法与结果:本研究合成了一系列新的含噻唑烷酮的类似物(1-20),并对其抗乙酰胆碱酯酶和丁基胆碱酯酶活性进行了评价。有效的类似物进一步进行分子对接,以研究它们的蛋白质-配体相互作用。高活性的类似物也进行了DFT,证实了与目标酶的结合性质,电学性质和性质。ADMET分析也证实了合成的系列具有类似药物的性质。结论:类比物5 (IC50分别为1.2±0.1µM和1.8±0.2µM)对阿尔茨海默病的抑制作用优于标准药物多奈哌齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Future medicinal chemistry
Future medicinal chemistry CHEMISTRY, MEDICINAL-
CiteScore
5.80
自引率
2.40%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.
期刊最新文献
A comprehensive insight into naphthalimides as novel structural skeleton of multitargeting promising antibiotics. A call to develop tramadol enantiomer for overcoming the tramadol crisis by reducing addiction. Advancements in PROTAC-based therapies for neurodegenerative diseases. EGFR molecular degraders: preclinical successes and the road ahead. How does machine learning augment alchemical binding free energy calculations?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1