A Component of the Septation Initiation Network Complex, SepL, Participates in the Cellobiose-Responsive Expression of Cellulolytic Enzyme Genes in Aspergillus aculeatus.
Kazumi Sawada, Saki Kikuya, Yui Shiga, Takashi Kawaguchi, Shuji Tani
{"title":"A Component of the Septation Initiation Network Complex, SepL, Participates in the Cellobiose-Responsive Expression of Cellulolytic Enzyme Genes in Aspergillus aculeatus.","authors":"Kazumi Sawada, Saki Kikuya, Yui Shiga, Takashi Kawaguchi, Shuji Tani","doi":"10.1002/jobm.202400266","DOIUrl":null,"url":null,"abstract":"<p><p>The production of cellulolytic enzymes in Aspergillus aculeatus is regulated at transcriptional levels in response to inducers and various physiological signals. In this study, we identified that a component of the septation initiation network complex, SepL, a putative protein kinase, was involved in the expression of carbohydrate-active enzyme (CAZyme) encoding genes. The deletion of sepL (ΔsepL) in A. aculeatus resulted in a deficiency in both septation and conidiation and sensitivity to Congo red. These phenotypes of ΔsepL are conserved in Aspergillus. In addition to the conserved function of SepL in Aspergillus, we found that SepL in A. aculeatus was necessary for the inducible expression of the CAZyme genes in response to cellobiose, whereas the inducible expression of these genes in response to 1,4-β-mannobiose was significantly reduced but not abolished. Combining the results of the present functional analysis of SepL with previous evidence that the expression of the CAZyme genes, which is responsive to both cellobiose and 1,4-β-mannobiose, is regulated by a transcription factor ManR in A. aculeatus, indicates that SepL in A. aculeatus is involved in the selective expression of the cellobiose-responsive CAZyme genes under the control of ManR.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400266"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400266","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The production of cellulolytic enzymes in Aspergillus aculeatus is regulated at transcriptional levels in response to inducers and various physiological signals. In this study, we identified that a component of the septation initiation network complex, SepL, a putative protein kinase, was involved in the expression of carbohydrate-active enzyme (CAZyme) encoding genes. The deletion of sepL (ΔsepL) in A. aculeatus resulted in a deficiency in both septation and conidiation and sensitivity to Congo red. These phenotypes of ΔsepL are conserved in Aspergillus. In addition to the conserved function of SepL in Aspergillus, we found that SepL in A. aculeatus was necessary for the inducible expression of the CAZyme genes in response to cellobiose, whereas the inducible expression of these genes in response to 1,4-β-mannobiose was significantly reduced but not abolished. Combining the results of the present functional analysis of SepL with previous evidence that the expression of the CAZyme genes, which is responsive to both cellobiose and 1,4-β-mannobiose, is regulated by a transcription factor ManR in A. aculeatus, indicates that SepL in A. aculeatus is involved in the selective expression of the cellobiose-responsive CAZyme genes under the control of ManR.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).