Christian Staehr, Halvor Østerby Guldbrandsen, Casper Homilius, Laura Øllegaard Johnsen, Dmitry Postnov, Tina M Pedersen, Sandrine Pierre, Shaun L Sandow, Vladimir V Matchkov
{"title":"Targeting Na,K-ATPase-Src signaling to normalize cerebral blood flow in a murine model of familial hemiplegic migraine.","authors":"Christian Staehr, Halvor Østerby Guldbrandsen, Casper Homilius, Laura Øllegaard Johnsen, Dmitry Postnov, Tina M Pedersen, Sandrine Pierre, Shaun L Sandow, Vladimir V Matchkov","doi":"10.1177/0271678X241305562","DOIUrl":null,"url":null,"abstract":"<p><p>Familial hemiplegic migraine type 2 (FHM2) is linked to Na,K-ATPase α<sub>2</sub> isoform mutations, including that of G301R. Mice heterozygous for this mutation (<math><mrow><msubsup><mrow><mo>α</mo></mrow><mn>2</mn><mrow><mo>+</mo><mo>/</mo><mtext>G3</mtext><mn>0</mn><mtext>1R</mtext></mrow></msubsup></mrow></math>) show cerebrovascular hypercontractility associated with amplified Src kinase signaling, and exaggerated neurovascular coupling. This study hypothesized that targeting Na,K-ATPase-dependent Src phosphorylation with pNaKtide would normalize cerebral perfusion and neurovascular coupling in <math><mrow><msubsup><mrow><mo>α</mo></mrow><mn>2</mn><mrow><mo>+</mo><mo>/</mo><mtext>G3</mtext><mn>0</mn><mtext>1R</mtext></mrow></msubsup></mrow></math> mice. The effect of pNaKtide on cerebral blood flow and neurovascular coupling was assessed using laser speckle contrast imaging in awake, head-fixed mice with cranial windows in a longitudinal study design. At baseline, compared to wild type, <math><mrow><msubsup><mrow><mo>α</mo></mrow><mn>2</mn><mrow><mo>+</mo><mo>/</mo><mtext>G3</mtext><mn>0</mn><mtext>1R</mtext></mrow></msubsup></mrow></math> mice exhibited increased middle cerebral artery tone; with whisker stimulation leading to an exaggerated increase in sensory cortex blood flow. No difference between genotypes in telemetrically assessed blood pressure occurred. The exaggerated neurovascular coupling in <math><mrow><msubsup><mrow><mo>α</mo></mrow><mn>2</mn><mrow><mo>+</mo><mo>/</mo><mtext>G3</mtext><mn>0</mn><mtext>1R</mtext></mrow></msubsup></mrow></math> mice was associated with increased K<sub>ir</sub>2.1 channel expression in cerebrovascular endothelium. Two weeks pNaKtide treatment normalized cerebral artery tone, endothelial K<sub>ir</sub>2.1 expression, and neurovascular coupling in <math><mrow><msubsup><mrow><mo>α</mo></mrow><mn>2</mn><mrow><mo>+</mo><mo>/</mo><mtext>G3</mtext><mn>0</mn><mtext>1R</mtext></mrow></msubsup></mrow></math> mice. Inhibition of the Na,K-ATPase-dependent Src kinase signaling with pNaKtide prevented excessive vasoconstriction and disturbances in neurovascular coupling in <math><mrow><msubsup><mrow><mo>α</mo></mrow><mn>2</mn><mrow><mo>+</mo><mo>/</mo><mtext>G3</mtext><mn>0</mn><mtext>1R</mtext></mrow></msubsup></mrow></math> mice. pNaKtide had only minor hypotensive effect similar in both genotypes. These results demonstrate a novel treatment target to normalize cerebral perfusion in FHM2.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241305562"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241305562","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Familial hemiplegic migraine type 2 (FHM2) is linked to Na,K-ATPase α2 isoform mutations, including that of G301R. Mice heterozygous for this mutation () show cerebrovascular hypercontractility associated with amplified Src kinase signaling, and exaggerated neurovascular coupling. This study hypothesized that targeting Na,K-ATPase-dependent Src phosphorylation with pNaKtide would normalize cerebral perfusion and neurovascular coupling in mice. The effect of pNaKtide on cerebral blood flow and neurovascular coupling was assessed using laser speckle contrast imaging in awake, head-fixed mice with cranial windows in a longitudinal study design. At baseline, compared to wild type, mice exhibited increased middle cerebral artery tone; with whisker stimulation leading to an exaggerated increase in sensory cortex blood flow. No difference between genotypes in telemetrically assessed blood pressure occurred. The exaggerated neurovascular coupling in mice was associated with increased Kir2.1 channel expression in cerebrovascular endothelium. Two weeks pNaKtide treatment normalized cerebral artery tone, endothelial Kir2.1 expression, and neurovascular coupling in mice. Inhibition of the Na,K-ATPase-dependent Src kinase signaling with pNaKtide prevented excessive vasoconstriction and disturbances in neurovascular coupling in mice. pNaKtide had only minor hypotensive effect similar in both genotypes. These results demonstrate a novel treatment target to normalize cerebral perfusion in FHM2.
家族性偏瘫偏头痛2型(FHM2)与Na, k - atp酶α2亚型突变有关,包括G301R突变。该突变(α2+/G301R)的杂合小鼠表现出与Src激酶信号放大相关的脑血管过度收缩,以及过度的神经血管偶联。本研究假设用pNaKtide靶向Na, k - atpase依赖性Src磷酸化可以使α2+/G301R小鼠的脑灌注和神经血管偶联正常化。在一项纵向研究设计中,采用激光散斑对比成像技术评估pNaKtide对清醒、头部固定、颅骨窗小鼠脑血流量和神经血管耦合的影响。在基线时,与野生型相比,α2+/G301R小鼠表现出大脑中动脉张力增加;须刺激会导致感觉皮层血流量的过度增加。基因型之间在遥测测量血压方面没有差异。α2+/G301R小鼠神经血管偶联增强与脑血管内皮Kir2.1通道表达增加有关。pNaKtide治疗两周后,α2+/G301R小鼠的脑动脉张力、内皮Kir2.1表达和神经血管偶联正常。在α2+/G301R小鼠中,用pNaKtide抑制Na, k - atpase依赖性Src激酶信号传导可防止过度血管收缩和神经血管偶联紊乱。pNaKtide在两种基因型中只有轻微的降压作用。这些结果为FHM2脑灌注正常化提供了新的治疗靶点。
期刊介绍:
JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.