Mechanical properties of bone cells studied by atomic force microscopy.

IF 1.5 4区 工程技术 Q3 MICROSCOPY Journal of microscopy Pub Date : 2024-12-04 DOI:10.1111/jmi.13373
Xiaoqi Zhang, Zuobin Wang, Haiyue Yu, Zengren Tao, Wei Ji
{"title":"Mechanical properties of bone cells studied by atomic force microscopy.","authors":"Xiaoqi Zhang, Zuobin Wang, Haiyue Yu, Zengren Tao, Wei Ji","doi":"10.1111/jmi.13373","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoblasts are the functional cells capable of bone formation in the bone microenvironment and play an important role in bone growth, development, and the maintenance of bone mass. The cells cultured in vitro are derived from preosteoblasts in tissues and possess the ability to divide and proliferate. Osteoblasts form the bone matrix by secreting collagen and other matrix proteins, which provides a foundation for the deposition of minerals such as calcium and phosphorus, ultimately resulting in the formation of hard bone tissue. Bone diseases affect the quality of life and the aging of the population. Bone diseases such as osteoporosis, fractures, bone tumours, and arthritis have a significant impact on quality of life, especially among the elderly population. These realities remind us that we should pay more attention to bone and joint health. Therefore, it is particularly important to study the imaging and characterisation of mechanical properties of bone cells, which provides a basis for the research of bone diseases in human beings.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13373","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoblasts are the functional cells capable of bone formation in the bone microenvironment and play an important role in bone growth, development, and the maintenance of bone mass. The cells cultured in vitro are derived from preosteoblasts in tissues and possess the ability to divide and proliferate. Osteoblasts form the bone matrix by secreting collagen and other matrix proteins, which provides a foundation for the deposition of minerals such as calcium and phosphorus, ultimately resulting in the formation of hard bone tissue. Bone diseases affect the quality of life and the aging of the population. Bone diseases such as osteoporosis, fractures, bone tumours, and arthritis have a significant impact on quality of life, especially among the elderly population. These realities remind us that we should pay more attention to bone and joint health. Therefore, it is particularly important to study the imaging and characterisation of mechanical properties of bone cells, which provides a basis for the research of bone diseases in human beings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子力显微镜研究骨细胞的力学特性。
成骨细胞是骨微环境中具有成骨功能的细胞,在骨生长发育和骨量维持中起着重要作用。体外培养的细胞来源于组织中的成骨前细胞,具有分裂和增殖的能力。成骨细胞通过分泌胶原蛋白等基质蛋白形成骨基质,为钙、磷等矿物质的沉积提供基础,最终形成坚硬的骨组织。骨病影响生活质量和人口老龄化。骨质疏松症、骨折、骨肿瘤和关节炎等骨病对生活质量有重大影响,特别是在老年人中。这些现实提醒我们,我们应该更加注意骨骼和关节的健康。因此,研究骨细胞力学特性的成像和表征就显得尤为重要,这将为人类骨病的研究提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
期刊最新文献
Geometric characteristics of stromal collagen fibres in breast cancer using differential interference contrast microscopy. LiveLattice: Real-time visualisation of tilted light-sheet microscopy data using a memory-efficient transformation algorithm. Neural network-assisted localization of clustered point spread functions in single-molecule localization microscopy. Innovative sample preparation using alcohol dehydration and high refractive index medium enables acquisition of two-channel super-resolution 3D STED image of an entire oocyte. In situ isotropic 3D imaging of vasculature perfusion specimens using x-ray microscopic dual-energy CT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1