Transcranial ultrasound modeling using the spectral-element method.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS Journal of the Acoustical Society of America Pub Date : 2024-12-01 DOI:10.1121/10.0034474
Patrick Marty, Christian Boehm, Martin van Driel, Andreas Fichtner
{"title":"Transcranial ultrasound modeling using the spectral-element method.","authors":"Patrick Marty, Christian Boehm, Martin van Driel, Andreas Fichtner","doi":"10.1121/10.0034474","DOIUrl":null,"url":null,"abstract":"<p><p>This work explores techniques for accurately modeling the propagation of ultrasound waves in lossy fluid-solid media, such as within transcranial ultrasound, using the spectral-element method. The objectives of this work are twofold, namely, (1) to present a formulation of the coupled viscoacoustic-viscoelastic wave equation for the spectral-element method in order to incorporate attenuation in both fluid and solid regions and (2) to provide an end-to-end workflow for performing spectral-element simulations in transcranial ultrasound. The matrix-free implementation of this high-order finite-element method is very well-suited for performing waveform-based ultrasound simulations for both transcranial imaging and focused ultrasound treatment thanks to its excellent accuracy, flexibility for dealing with complex geometries, and computational efficiency. The ability to explicitly mesh distinct interfaces between regions with high impedance contrasts eliminates staircasing artifacts, which are otherwise non-trivial to mitigate within discretization approaches based on regular grids. This work demonstrates the efficacy of this modeling technique for transcranial ultrasound through a number of numerical examples. While the examples in this work primarily focus on transcranial applications, this type of modeling is equally relevant within other soft tissue-bone systems such as in limb or spine imaging.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"3674-3693"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034474","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores techniques for accurately modeling the propagation of ultrasound waves in lossy fluid-solid media, such as within transcranial ultrasound, using the spectral-element method. The objectives of this work are twofold, namely, (1) to present a formulation of the coupled viscoacoustic-viscoelastic wave equation for the spectral-element method in order to incorporate attenuation in both fluid and solid regions and (2) to provide an end-to-end workflow for performing spectral-element simulations in transcranial ultrasound. The matrix-free implementation of this high-order finite-element method is very well-suited for performing waveform-based ultrasound simulations for both transcranial imaging and focused ultrasound treatment thanks to its excellent accuracy, flexibility for dealing with complex geometries, and computational efficiency. The ability to explicitly mesh distinct interfaces between regions with high impedance contrasts eliminates staircasing artifacts, which are otherwise non-trivial to mitigate within discretization approaches based on regular grids. This work demonstrates the efficacy of this modeling technique for transcranial ultrasound through a number of numerical examples. While the examples in this work primarily focus on transcranial applications, this type of modeling is equally relevant within other soft tissue-bone systems such as in limb or spine imaging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
期刊最新文献
Ducting of wave-breaking sound by the sea surface bubble layer. Soundscape perception indices (SPIs): Developing context-dependent single value scores of multidimensional soundscape perceptual qualitya). The influence of dialect loss on tone perception: Diminishing voice quality cues in preserved tone contrast. Transcranial ultrasound modeling using the spectral-element method. Noise assessment of multirotor configurations during landing proceduresa).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1