Annotation Practices in Computational Pathology: A European Society of Digital and Integrative Pathology (ESDIP) Survey Study.

IF 5.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Laboratory Investigation Pub Date : 2024-11-29 DOI:10.1016/j.labinv.2024.102203
Diana Montezuma, Sara P Oliveira, Yuri Tolkach, Peter Boor, Alex Haragan, Rita Carvalho, Vincenzo Della Mea, Tim-Rasmus Kiehl, Sabine Leh, Mustafa Yousif, David Ameisen, Mircea-Sebastian Șerbănescu, Norman Zerbe, Vincenzo L'Imperio
{"title":"Annotation Practices in Computational Pathology: A European Society of Digital and Integrative Pathology (ESDIP) Survey Study.","authors":"Diana Montezuma, Sara P Oliveira, Yuri Tolkach, Peter Boor, Alex Haragan, Rita Carvalho, Vincenzo Della Mea, Tim-Rasmus Kiehl, Sabine Leh, Mustafa Yousif, David Ameisen, Mircea-Sebastian Șerbănescu, Norman Zerbe, Vincenzo L'Imperio","doi":"10.1016/j.labinv.2024.102203","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating digital pathology and artificial intelligence (AI) algorithms can potentially improve diagnostic practice and precision medicine. Developing reliable, generalizable, and comparable AI algorithms depends on access to meticulously annotated data. However, achieving this requires robust collaboration among pathologists, computer scientists, and other researchers to ensure data quality and consistency. The lack of standardization and scalability is a significant challenge when generating annotations and annotated data sets. Recognizing these limitations, the Scientific Committee of the European Society of Digital and Integrative Pathology (ESDIP) performed a comprehensive international survey to understand the current state of annotation practices and identify actionable areas to address critical needs in the annotation process. The analysis and summary of the survey results provide several insights for all stakeholders involved in data preparation and ground truthing, ultimately contributing to the advancement of AI in computational pathology.</p>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":" ","pages":"102203"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.labinv.2024.102203","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating digital pathology and artificial intelligence (AI) algorithms can potentially improve diagnostic practice and precision medicine. Developing reliable, generalizable, and comparable AI algorithms depends on access to meticulously annotated data. However, achieving this requires robust collaboration among pathologists, computer scientists, and other researchers to ensure data quality and consistency. The lack of standardization and scalability is a significant challenge when generating annotations and annotated data sets. Recognizing these limitations, the Scientific Committee of the European Society of Digital and Integrative Pathology (ESDIP) performed a comprehensive international survey to understand the current state of annotation practices and identify actionable areas to address critical needs in the annotation process. The analysis and summary of the survey results provide several insights for all stakeholders involved in data preparation and ground truthing, ultimately contributing to the advancement of AI in computational pathology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算病理学中的注释实践:欧洲数字和综合病理学协会(ESDIP)调查研究。
整合数字病理学(DP)和人工智能(AI)算法可以潜在地改善诊断实践和精准医疗。开发可靠的、可推广的、可比较的人工智能算法依赖于对精心注释的数据的访问。然而,实现这一目标需要病理学家、计算机科学家和其他研究人员之间的紧密合作,以确保数据的质量和一致性。在生成注释和带注释的数据集时,缺乏标准化和可伸缩性是一个重大挑战。认识到这些局限性,欧洲数字与综合病理学学会(ESDIP)科学委员会进行了一项全面的国际调查,以了解注释实践的现状,并确定可操作的领域,以解决注释过程中的关键需求。对调查结果的分析和总结为参与数据准备和实地调查的所有利益相关者提供了一些见解,最终有助于人工智能在计算病理学方面的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Laboratory Investigation
Laboratory Investigation 医学-病理学
CiteScore
8.30
自引率
0.00%
发文量
125
审稿时长
2 months
期刊介绍: Laboratory Investigation is an international journal owned by the United States and Canadian Academy of Pathology. Laboratory Investigation offers prompt publication of high-quality original research in all biomedical disciplines relating to the understanding of human disease and the application of new methods to the diagnosis of disease. Both human and experimental studies are welcome.
期刊最新文献
Microsatellite stable gastric cancer can be classified into two molecular subtypes with different immunotherapy response and prognosis based on gene sequencing and computational pathology. Virtual tissue microarrays for validating digital biomarker analysis in colorectal carcinoma. Automated scoring to assess RAD51-mediated homologous recombination in ovarian patient-derived tumor organoids. HMGB1 encapsulated in podocyte-derived exosomes plays a central role in glomerular endothelial cell injury in lupus nephritis by regulating TRIM27 expression. Leveraging Deep Learning for Immune Cell Quantification and Prognostic Evaluation in Radiotherapy-Treated Oropharyngeal Squamous Cell Carcinomas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1