Lrp Family Regulator SCAB_Lrp2 Responds to the Precursor Tryptophan and Represses the Thaxtomin Biosynthesis in Streptomyces scabies.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Molecular plant pathology Pub Date : 2024-12-01 DOI:10.1111/mpp.70036
Haoyang He, Lijuan Tang, Mingrui Song, Hui Chen, Youquan Zou, Xueyan Li, Endong Yang, Hang Wu, Buchang Zhang, Jing Liu
{"title":"Lrp Family Regulator SCAB_Lrp2 Responds to the Precursor Tryptophan and Represses the Thaxtomin Biosynthesis in Streptomyces scabies.","authors":"Haoyang He, Lijuan Tang, Mingrui Song, Hui Chen, Youquan Zou, Xueyan Li, Endong Yang, Hang Wu, Buchang Zhang, Jing Liu","doi":"10.1111/mpp.70036","DOIUrl":null,"url":null,"abstract":"<p><p>Streptomyces scabies is a well-researched plant pathogen belonging to the genus Streptomyces. Its virulence is linked to the production of the secondary metabolite thaxtomin A, which is tightly regulated at the transcriptional level. The leucine-responsive regulatory protein (Lrp) family is conserved in prokaryotes and is involved in various crucial biological processes. However, the regulatory interaction between Lrp protein and pathogenic Streptomyces species remains poorly understood. This study aims to explore the role of SCAB_Lrp2 in regulating thaxtomin biosynthesis and pathogenicity, and to analyse the shared and unique features of Lrp homologues in S. scabies. We observed that SCAB_Lrp2 (SCAB_75421) showed significant homology with SCAB_Lrp, a recognised activator of thaxtomin A production in S. scabies. Our results revealed a regulatory interaction between SCAB_Lrp2 and SCAB_Lrp in terms of their targets, although SCAB_Lrp2 does not respond to the amino acid-effectors of SCAB_Lrp. In contrast to SCAB_Lrp, deletion of SCAB_Lrp2 resulted in a notable increase in thaxtomin A production with the emergence of a hypervirulent phenotype in S. scabies. Further analysis revealed that SCAB_Lrp2 represses the transcription of the thaxtomin biosynthetic gene cluster by directly regulating the cluster-situated regulator (CSR) gene txtR. Moreover, the precursor of thaxtomin, tryptophan, acts as an effector of SCAB_Lrp2, strengthening the repressive effect on thaxtomin biosynthesis through txtR. These findings provide new insights into the functional conservation and diversity of Lrp homologues involved in the biosynthesis of thaxtomin phytotoxins in pathogenic Streptomyces species.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 12","pages":"e70036"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70036","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Streptomyces scabies is a well-researched plant pathogen belonging to the genus Streptomyces. Its virulence is linked to the production of the secondary metabolite thaxtomin A, which is tightly regulated at the transcriptional level. The leucine-responsive regulatory protein (Lrp) family is conserved in prokaryotes and is involved in various crucial biological processes. However, the regulatory interaction between Lrp protein and pathogenic Streptomyces species remains poorly understood. This study aims to explore the role of SCAB_Lrp2 in regulating thaxtomin biosynthesis and pathogenicity, and to analyse the shared and unique features of Lrp homologues in S. scabies. We observed that SCAB_Lrp2 (SCAB_75421) showed significant homology with SCAB_Lrp, a recognised activator of thaxtomin A production in S. scabies. Our results revealed a regulatory interaction between SCAB_Lrp2 and SCAB_Lrp in terms of their targets, although SCAB_Lrp2 does not respond to the amino acid-effectors of SCAB_Lrp. In contrast to SCAB_Lrp, deletion of SCAB_Lrp2 resulted in a notable increase in thaxtomin A production with the emergence of a hypervirulent phenotype in S. scabies. Further analysis revealed that SCAB_Lrp2 represses the transcription of the thaxtomin biosynthetic gene cluster by directly regulating the cluster-situated regulator (CSR) gene txtR. Moreover, the precursor of thaxtomin, tryptophan, acts as an effector of SCAB_Lrp2, strengthening the repressive effect on thaxtomin biosynthesis through txtR. These findings provide new insights into the functional conservation and diversity of Lrp homologues involved in the biosynthesis of thaxtomin phytotoxins in pathogenic Streptomyces species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
期刊最新文献
Lrp Family Regulator SCAB_Lrp2 Responds to the Precursor Tryptophan and Represses the Thaxtomin Biosynthesis in Streptomyces scabies. SsPtc3 Modulating SsSmk1-MAPK and Autophagy to Facilitate Growth and Pathogenicity in Sclerotinia sclerotiorum. Correction to 'Heat Shock Transcription Factor 3 Regulates Plant Immune Response Through Modulation of Salicylic Acid Accumulation and Signalling in Cassava'. ClBeclin1 Positively Regulates Citrus Defence Against Citrus Yellow Vein Clearing Virus Through Mediating Autophagy-Dependent Degradation of ClAPX1. Correction to: New persistent plant RNA virus carries mutations to weaken viral suppression of antiviral RNA interference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1