Likeng Ji, Jiongyu Chen, Lifang He, Fan Zhang, Zihao Deng, Jiediao Lin, Zhaochang Qi, Xi Luo, Armando E. Giuliano, Xiaojiang Cui, Stanley Li Lin, Yukun Cui
{"title":"Reversal of endocrine resistance via N6AMT1-NEDD4L pathway-mediated p110α degradation","authors":"Likeng Ji, Jiongyu Chen, Lifang He, Fan Zhang, Zihao Deng, Jiediao Lin, Zhaochang Qi, Xi Luo, Armando E. Giuliano, Xiaojiang Cui, Stanley Li Lin, Yukun Cui","doi":"10.1038/s41388-024-03238-3","DOIUrl":null,"url":null,"abstract":"Approximately 70% of breast cancer (BC) cases are luminal-type (estrogen receptor-positive, ER+), suitable for endocrine therapy with tamoxifen as the most commonly used drug. However, about 30% of these patients develop tamoxifen resistance due to various mechanisms, primarily involving PI3K pathway activation through mutations or unknown pathways. Here, we discover, via bioinformatics analysis and clinical samples, that N6 adenine-specific DNA methyltransferase 1 (N6AMT1) is highly expressed in luminal breast cancer but downregulated in tamoxifen-resistant (TamR) BC cells. ChIP-qPCR and luciferase reporter assays showed that FOXA1 binds to the N6AMT1 promoter and enhances its transcription. In TamR models, FOXA1 and N6AMT1 are downregulated, increasing p110α protein levels (but not mRNA), phospho-AKT levels, and tamoxifen resistance. In vivo, N6AMT1 overexpression enhanced tamoxifen sensitivity, while knockdown reduced it; this sensitivity could be restored with the p110α inhibitor A66. Clinically, decreased N6AMT1 expression correlates with poor prognosis in luminal BC patients. In TamR BC organoids, combining tamoxifen with A66 further reduced growth compared to either treatment alone. Mechanistically, increased p110α levels result from inhibited degradation by E3 ubiquitin ligase NEDD4L. These findings suggest N6AMT1 as a potential luminal breast cancer biomarker and highlight the N6AMT1-p110α pathway as a therapeutic target to sensitize cells to tamoxifen.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":"44 8","pages":"530-544"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41388-024-03238-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-024-03238-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Approximately 70% of breast cancer (BC) cases are luminal-type (estrogen receptor-positive, ER+), suitable for endocrine therapy with tamoxifen as the most commonly used drug. However, about 30% of these patients develop tamoxifen resistance due to various mechanisms, primarily involving PI3K pathway activation through mutations or unknown pathways. Here, we discover, via bioinformatics analysis and clinical samples, that N6 adenine-specific DNA methyltransferase 1 (N6AMT1) is highly expressed in luminal breast cancer but downregulated in tamoxifen-resistant (TamR) BC cells. ChIP-qPCR and luciferase reporter assays showed that FOXA1 binds to the N6AMT1 promoter and enhances its transcription. In TamR models, FOXA1 and N6AMT1 are downregulated, increasing p110α protein levels (but not mRNA), phospho-AKT levels, and tamoxifen resistance. In vivo, N6AMT1 overexpression enhanced tamoxifen sensitivity, while knockdown reduced it; this sensitivity could be restored with the p110α inhibitor A66. Clinically, decreased N6AMT1 expression correlates with poor prognosis in luminal BC patients. In TamR BC organoids, combining tamoxifen with A66 further reduced growth compared to either treatment alone. Mechanistically, increased p110α levels result from inhibited degradation by E3 ubiquitin ligase NEDD4L. These findings suggest N6AMT1 as a potential luminal breast cancer biomarker and highlight the N6AMT1-p110α pathway as a therapeutic target to sensitize cells to tamoxifen.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.