Biagio Brattoli, Mohammad Mostafavi, Taebum Lee, Wonkyung Jung, Jeongun Ryu, Seonwook Park, Jongchan Park, Sergio Pereira, Seunghwan Shin, Sangjoon Choi, Hyojin Kim, Donggeun Yoo, Siraj M. Ali, Kyunghyun Paeng, Chan-Young Ock, Soo Ick Cho, Seokhwi Kim
{"title":"A universal immunohistochemistry analyzer for generalizing AI-driven assessment of immunohistochemistry across immunostains and cancer types","authors":"Biagio Brattoli, Mohammad Mostafavi, Taebum Lee, Wonkyung Jung, Jeongun Ryu, Seonwook Park, Jongchan Park, Sergio Pereira, Seunghwan Shin, Sangjoon Choi, Hyojin Kim, Donggeun Yoo, Siraj M. Ali, Kyunghyun Paeng, Chan-Young Ock, Soo Ick Cho, Seokhwi Kim","doi":"10.1038/s41698-024-00770-z","DOIUrl":null,"url":null,"abstract":"Immunohistochemistry (IHC) is the common companion diagnostics in targeted therapies. However, quantifying protein expressions in IHC images present a significant challenge, due to variability in manual scoring and inherent subjective interpretation. Deep learning (DL) offers a promising approach to address these issues, though current models require extensive training for each cancer and IHC type, limiting the practical application. We developed a Universal IHC (UIHC) analyzer, a DL-based tool that quantifies protein expression across different cancers and IHC types. This multi-cohort trained model outperformed conventional single-cohort models in analyzing unseen IHC images (Kappa score 0.578 vs. up to 0.509) and demonstrated consistent performance across varying positive staining cutoff values. In a discovery application, the UIHC model assigned higher tumor proportion scores to MET amplification cases, but not MET exon 14 splicing or other non-small cell lung cancer cases. This UIHC model represents a novel role for DL that further advances quantitative analysis of IHC.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-13"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00770-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00770-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunohistochemistry (IHC) is the common companion diagnostics in targeted therapies. However, quantifying protein expressions in IHC images present a significant challenge, due to variability in manual scoring and inherent subjective interpretation. Deep learning (DL) offers a promising approach to address these issues, though current models require extensive training for each cancer and IHC type, limiting the practical application. We developed a Universal IHC (UIHC) analyzer, a DL-based tool that quantifies protein expression across different cancers and IHC types. This multi-cohort trained model outperformed conventional single-cohort models in analyzing unseen IHC images (Kappa score 0.578 vs. up to 0.509) and demonstrated consistent performance across varying positive staining cutoff values. In a discovery application, the UIHC model assigned higher tumor proportion scores to MET amplification cases, but not MET exon 14 splicing or other non-small cell lung cancer cases. This UIHC model represents a novel role for DL that further advances quantitative analysis of IHC.
期刊介绍:
Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.