Tao Zhang, Paul W Bosland, Yan Ma, Yuhang Wang, Wei Li, Weifu Kong, Min Wei, Panpan Duan, Gaoyuan Zhang, Bingqiang Wei
{"title":"Mapping of resistance genes to powdery mildew based on DNA re-sequencing and bulk segregant analysis in Capsicum.","authors":"Tao Zhang, Paul W Bosland, Yan Ma, Yuhang Wang, Wei Li, Weifu Kong, Min Wei, Panpan Duan, Gaoyuan Zhang, Bingqiang Wei","doi":"10.1007/s00709-024-02013-1","DOIUrl":null,"url":null,"abstract":"<p><p>Powdery mildew caused by Leveillula taurica adversely affects the development and growth of pepper plants. However, there have been few reports on the fine mapping and quantitative trait locus (QTLs) gene cloning of resistance genes to powdery mildew in pepper. Herein, an F<sub>2</sub> segregating population was constructed using the high resistance material \"NuMex Suave Red\" and the extremely susceptible material \"c89\" for bulked segregant analysis and DNA re-sequencing (BSA-seq). Molecular markers were used to achieve fine mapping, followed by expression verification. A major QTL located on chromosome 5 (Chr5, 7.20-11.75 Mb) that is associated with resistance to powdery mildew in pepper was mapped using BSA-seq. A narrow interval of 64.86 kb encompassing five genes was refined using InDel and KSAP molecular markers developed from the QTL region. Among them, the expression of the ubiquitin-conjugating enzyme E2 gene, Capana05g000392, was significantly upregulated in multiple resistant materials. In addition, there was a single nucleotide polymorphism (SNP) of A/G in the 241st position of the CDS sequence of Capana05g000392, which in turn leads to an amino acid polymorphism of M/V between susceptible parent and resistant parent. Overall, these results indicate that the Capana05g000392 gene may serve as a robust potential factor against powdery mildew in pepper. These findings further elucidate the genetic mechanism of resistance to powdery mildew in pepper and facilitate molecular marker-assisted breeding.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-02013-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Powdery mildew caused by Leveillula taurica adversely affects the development and growth of pepper plants. However, there have been few reports on the fine mapping and quantitative trait locus (QTLs) gene cloning of resistance genes to powdery mildew in pepper. Herein, an F2 segregating population was constructed using the high resistance material "NuMex Suave Red" and the extremely susceptible material "c89" for bulked segregant analysis and DNA re-sequencing (BSA-seq). Molecular markers were used to achieve fine mapping, followed by expression verification. A major QTL located on chromosome 5 (Chr5, 7.20-11.75 Mb) that is associated with resistance to powdery mildew in pepper was mapped using BSA-seq. A narrow interval of 64.86 kb encompassing five genes was refined using InDel and KSAP molecular markers developed from the QTL region. Among them, the expression of the ubiquitin-conjugating enzyme E2 gene, Capana05g000392, was significantly upregulated in multiple resistant materials. In addition, there was a single nucleotide polymorphism (SNP) of A/G in the 241st position of the CDS sequence of Capana05g000392, which in turn leads to an amino acid polymorphism of M/V between susceptible parent and resistant parent. Overall, these results indicate that the Capana05g000392 gene may serve as a robust potential factor against powdery mildew in pepper. These findings further elucidate the genetic mechanism of resistance to powdery mildew in pepper and facilitate molecular marker-assisted breeding.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".