Structure-based drug design of pre-clinical candidate nanopiperine: a direct target for CYP1A1 protein to mitigate hyperglycaemia and associated microbes.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY SAR and QSAR in Environmental Research Pub Date : 2024-11-01 Epub Date: 2024-12-04 DOI:10.1080/1062936X.2024.2434934
R Dey, S Saha, S H Molla, S Nandi, A Samadder
{"title":"Structure-based drug design of pre-clinical candidate nanopiperine: a direct target for CYP1A1 protein to mitigate hyperglycaemia and associated microbes.","authors":"R Dey, S Saha, S H Molla, S Nandi, A Samadder","doi":"10.1080/1062936X.2024.2434934","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is attributed to an increased vulnerability to bacterial infection linked to unregulated hyperglycaemia. The present study highlights the formulation of nanoparticles with phyto-compound piperine (PIP) encapsulated within non-toxic biodegradable polymer poly-lactide co-glycolide (PLGA) which showed a variety in surface functionality, biocompatibility, and the ability to tailor an optimized release rate from its polymeric enclosure. The observations revealed that nanopiperine (NPIP) pre-treatment in mice inhibited alteration in hepatic tissue architecture and hepato-biochemical parameters in diabetes and its associated bacterial infections. NPIP also decreased the propensity of lipids to undergo an oxidation process and stabilized the membrane lipids in vivo, thereby lowering oxidative stress and preventing enzymatic activation of CYP1A1. This result is corroborated with the in silico molecular docking study where PIP binding with CYP1A1 gave -11.32 Kcal/mol dock score value. The antibacterial activity of PIP was further demonstrated by the in silico PIP and Ef-Tu protein-binding efficacy revealing -6.48 Kcal/mol score value which was coupled with the results of in vitro studies where the zone of inhibition assay with NPIP against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. Thus, NPIP could serve as a potential drug candidate in modulating targeted proteins to inhibit the progression of hyperglycaemia and its associated microbes.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"1071-1093"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2434934","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes is attributed to an increased vulnerability to bacterial infection linked to unregulated hyperglycaemia. The present study highlights the formulation of nanoparticles with phyto-compound piperine (PIP) encapsulated within non-toxic biodegradable polymer poly-lactide co-glycolide (PLGA) which showed a variety in surface functionality, biocompatibility, and the ability to tailor an optimized release rate from its polymeric enclosure. The observations revealed that nanopiperine (NPIP) pre-treatment in mice inhibited alteration in hepatic tissue architecture and hepato-biochemical parameters in diabetes and its associated bacterial infections. NPIP also decreased the propensity of lipids to undergo an oxidation process and stabilized the membrane lipids in vivo, thereby lowering oxidative stress and preventing enzymatic activation of CYP1A1. This result is corroborated with the in silico molecular docking study where PIP binding with CYP1A1 gave -11.32 Kcal/mol dock score value. The antibacterial activity of PIP was further demonstrated by the in silico PIP and Ef-Tu protein-binding efficacy revealing -6.48 Kcal/mol score value which was coupled with the results of in vitro studies where the zone of inhibition assay with NPIP against Staphylococcus aureus and Escherichia coli. Thus, NPIP could serve as a potential drug candidate in modulating targeted proteins to inhibit the progression of hyperglycaemia and its associated microbes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构的临床前候选纳米胡椒碱药物设计:CYP1A1蛋白的直接靶点,以减轻高血糖和相关微生物。
糖尿病是由于与不受管制的高血糖相关的细菌感染易感性增加。目前的研究重点是将植物化合物胡椒碱(PIP)包封在无毒可生物降解聚合物聚丙交酯共聚物(PLGA)内的纳米颗粒的配方,该纳米颗粒具有多种表面功能,生物相容性以及从其聚合物外壳中定制最佳释放速率的能力。观察结果显示,纳米胡椒碱(NPIP)预处理小鼠可以抑制糖尿病及其相关细菌感染的肝组织结构和肝脏生化参数的改变。NPIP还能降低脂质发生氧化过程的倾向,稳定体内膜脂,从而降低氧化应激,防止CYP1A1的酶促活化。这一结果与硅分子对接研究相吻合,PIP与CYP1A1结合的对接评分值为-11.32 Kcal/mol。在体外实验中,对金黄色葡萄球菌和大肠杆菌的抑制区测定结果表明,在体外实验中,PIP与Ef-Tu蛋白结合的效果为-6.48 Kcal/mol,进一步证明了PIP的抑菌活性。因此,NPIP可以作为一种潜在的候选药物,调节靶向蛋白,抑制高血糖及其相关微生物的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
期刊最新文献
Application of monomer structures and fragments of local symmetry for simulation of glass transition temperatures of polymers. Targeting human arginyltransferase and post-translational protein arginylation: a pharmacophore-based multilayer screening and molecular dynamics approach to discover novel inhibitors with therapeutic promise. Enhanced prediction of beta-secretase inhibitory compounds with mol2vec technique and machine learning algorithms. Structure-based interaction study of Samaderine E and Bismurrayaquinone A phytochemicals as potential inhibitors of KRas oncoprotein. Uncovering blood-brain barrier permeability: a comparative study of machine learning models using molecular fingerprints, and SHAP explainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1