{"title":"Bayesian Decision Curve Analysis With Bayesdca.","authors":"Giuliano Netto Flores Cruz, Keegan Korthauer","doi":"10.1002/sim.10277","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical decisions are often guided by clinical prediction models or diagnostic tests. Decision curve analysis (DCA) combines classical assessment of predictive performance with the consequences of using these strategies for clinical decision-making. In DCA, the best decision strategy is the one that maximizes the net benefit: the net number of true positives (or negatives) provided by a given strategy. Here, we employ Bayesian approaches to DCA, addressing four fundamental concerns when evaluating clinical decision strategies: (i) which strategies are clinically useful, (ii) what is the best available decision strategy, (iii) which of two competing strategies is better, and (iv) what is the expected net benefit loss associated with the current level of uncertainty. While often consistent with frequentist point estimates, fully Bayesian DCA allows for an intuitive probabilistic interpretation framework and the incorporation of prior evidence. We evaluate the methods using simulation and provide a comprehensive case study. Software implementation is available in the bayesDCA R package. Ultimately, the Bayesian DCA workflow may help clinicians and health policymakers adopt better-informed decisions.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"6042-6058"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639651/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10277","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical decisions are often guided by clinical prediction models or diagnostic tests. Decision curve analysis (DCA) combines classical assessment of predictive performance with the consequences of using these strategies for clinical decision-making. In DCA, the best decision strategy is the one that maximizes the net benefit: the net number of true positives (or negatives) provided by a given strategy. Here, we employ Bayesian approaches to DCA, addressing four fundamental concerns when evaluating clinical decision strategies: (i) which strategies are clinically useful, (ii) what is the best available decision strategy, (iii) which of two competing strategies is better, and (iv) what is the expected net benefit loss associated with the current level of uncertainty. While often consistent with frequentist point estimates, fully Bayesian DCA allows for an intuitive probabilistic interpretation framework and the incorporation of prior evidence. We evaluate the methods using simulation and provide a comprehensive case study. Software implementation is available in the bayesDCA R package. Ultimately, the Bayesian DCA workflow may help clinicians and health policymakers adopt better-informed decisions.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.