Influence of Solar Wind High-Speed Streams on the Brazilian Low-Latitude Ionosphere During the Descending Phase of Solar Cycle 24.

IF 3.8 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Space Weather-The International Journal of Research and Applications Pub Date : 2024-12-01 Epub Date: 2024-11-28 DOI:10.1029/2024SW003873
S P Moraes-Santos, C M N Cândido, F Becker-Guedes, B Nava, V Klausner, C Borries, F S Chingarandi, T O Osanyin
{"title":"Influence of Solar Wind High-Speed Streams on the Brazilian Low-Latitude Ionosphere During the Descending Phase of Solar Cycle 24.","authors":"S P Moraes-Santos, C M N Cândido, F Becker-Guedes, B Nava, V Klausner, C Borries, F S Chingarandi, T O Osanyin","doi":"10.1029/2024SW003873","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the Brazilian low-latitude ionospheric response to CIR/HSS-driven geomagnetic storms during the declining phase of solar cycle 24, from 2016 to 2017. In this period the geomagnetic storms were mostly moderate, SymH<sub>min</sub> ≈ -72 nT, AE<sub>max</sub> ≈ 1580 nT, Vsw<sub>max</sub> ≈ 690 km/s and lasted, on average, for 6 days. We analyze the variations in Vertical Total Electron Content (VTEC) at three representative regions: bele, over the equatorial region; boav and cuib, at the northern and southern crests of the Equatorial Ionization Anomaly. Our findings reveal the role of High-Speed Solar Wind Streams and Corotating Interaction Region-driven geomagnetic storms. The VTEC intensifications were up to 30 TECu, during the daytime and nighttime. Additionally, three categories of nighttime enhancements were observed and analyzed with distinct characteristics and levels of pre-reversal strengthening; Depletions up to 20 TECu also occurred during the day and nighttime. The delay between the storm commencement and the positive and negative variations were, on average, 7 and 20 hours, respectively. We discuss the Prompt Penetration Electric Fields and Disturbance Dynamo Electric Fields following the magnetic reconnection between Earth's and interplanetary magnetic field, using observational data and modeling. Furthermore, this study presents catalogs of low-latitude ionospheric storms, providing detailed information for space weather applications and ionospheric modeling.</p>","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"22 12","pages":"e2024SW003873"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather-The International Journal of Research and Applications","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024SW003873","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the Brazilian low-latitude ionospheric response to CIR/HSS-driven geomagnetic storms during the declining phase of solar cycle 24, from 2016 to 2017. In this period the geomagnetic storms were mostly moderate, SymHmin ≈ -72 nT, AEmax ≈ 1580 nT, Vswmax ≈ 690 km/s and lasted, on average, for 6 days. We analyze the variations in Vertical Total Electron Content (VTEC) at three representative regions: bele, over the equatorial region; boav and cuib, at the northern and southern crests of the Equatorial Ionization Anomaly. Our findings reveal the role of High-Speed Solar Wind Streams and Corotating Interaction Region-driven geomagnetic storms. The VTEC intensifications were up to 30 TECu, during the daytime and nighttime. Additionally, three categories of nighttime enhancements were observed and analyzed with distinct characteristics and levels of pre-reversal strengthening; Depletions up to 20 TECu also occurred during the day and nighttime. The delay between the storm commencement and the positive and negative variations were, on average, 7 and 20 hours, respectively. We discuss the Prompt Penetration Electric Fields and Disturbance Dynamo Electric Fields following the magnetic reconnection between Earth's and interplanetary magnetic field, using observational data and modeling. Furthermore, this study presents catalogs of low-latitude ionospheric storms, providing detailed information for space weather applications and ionospheric modeling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
29.70%
发文量
166
审稿时长
>12 weeks
期刊介绍: Space Weather: The International Journal of Research and Applications (SWE) is devoted to understanding and forecasting space weather. The scope of understanding and forecasting includes: origins, propagation and interactions of solar-produced processes within geospace; interactions in Earth’s space-atmosphere interface region produced by disturbances from above and below; influences of cosmic rays on humans, hardware, and signals; and comparisons of these types of interactions and influences with the atmospheres of neighboring planets and Earth’s moon. Manuscripts should emphasize impacts on technical systems including telecommunications, transportation, electric power, satellite navigation, avionics/spacecraft design and operations, human spaceflight, and other systems. Manuscripts that describe models or space environment climatology should clearly state how the results can be applied.
期刊最新文献
Influence of Solar Wind High-Speed Streams on the Brazilian Low-Latitude Ionosphere During the Descending Phase of Solar Cycle 24. Super-Intense Geomagnetic Storm on 10-11 May 2024: Possible Mechanisms and Impacts. The Growth and Decay of Intense GNSS Amplitude and Phase Scintillation During Non-Storm Conditions. Interhemispheric Asymmetry in the High-Latitude Neutral Density Variations During the 13-14 March 2022 Storm. Automatic Detection and Classification of Spread‐F From Ionosonde at Hainan With Image‐Based Deep Learning Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1