The Influence Mechanism of Screw Internal Fixation on the Biomechanics of Lateral Malleolus Oblique Fractures.

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2025-01-01 Epub Date: 2024-12-03 DOI:10.1002/cnm.3895
Xinyuan Shi, Shuanzhu Wang, Yongzhi Gong, Shibo Gu, Haiquan Feng
{"title":"The Influence Mechanism of Screw Internal Fixation on the Biomechanics of Lateral Malleolus Oblique Fractures.","authors":"Xinyuan Shi, Shuanzhu Wang, Yongzhi Gong, Shibo Gu, Haiquan Feng","doi":"10.1002/cnm.3895","DOIUrl":null,"url":null,"abstract":"<p><p>It remains inconclusive about the stability and optimal fixation scheme of screw internal fixation for lateral malleolus oblique fractures in clinical practice. In this study, the effects of different screw internal fixation methods on the biomechanics of lateral malleolus oblique fractures were investigated. These efforts are expected to lay a theoretical foundation for the selection of internal fixation methods and rehabilitation training regimens in the treatment of lateral malleolus fractures. A healthy ankle joint model and a lateral malleolus fracture internal fixation model were established based on CT data with the aid of some software. Besides, the effects of screw internal fixation modalities on the fracture displacement of fibula fractures, fibula Von Mises stress, and screw Von Mises stress under different physiological conditions and loading conditions were investigated using finite element methods (FEMs) and in vitro physical experiments. The double screw vertical fibular axis internal fixation approach had the lowest fracture displacement of fibula fractures and screw Von Mises stress values; while the double screw vertical fracture line internal fixation approach had the lowest fibula Von Mises stress values. Under different physiological conditions, the magnitude of the peak Von Mises stress of the fibula and screw was ranked as plantarflexion 20° > plantarflexion 10° > neutral position > dorsiflexion 10° > dorsiflexion 20°; and the magnitude of the peak displacement of the fibula fracture breaks was ranked as plantarflexion 20° > plantarflexion 10° > neutral position > dorsiflexion 20° > dorsiflexion 10°. The results of in vitro physical experiments and finite element analyses were in good agreement, which validated the validity of finite element analyses. The vertical fracture line screw implantation method displays a better load-sharing ability; while the vertical fibular axis screw implantation method exhibits a better ability to prevent axial shortening of the fibula and also reduces the risk of screw fatigue damage. Overall, the double screw achieves better therapeutic effects than the single screw. Given that the ankle joint has high stability in the dorsiflexion position, it is recommended to prioritize dorsiflexion rehabilitation training, rather than dorsiflexion and plantarflexion rehabilitation training with too large angles, in the treatment of lateral malleolus fractures.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3895"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cnm.3895","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It remains inconclusive about the stability and optimal fixation scheme of screw internal fixation for lateral malleolus oblique fractures in clinical practice. In this study, the effects of different screw internal fixation methods on the biomechanics of lateral malleolus oblique fractures were investigated. These efforts are expected to lay a theoretical foundation for the selection of internal fixation methods and rehabilitation training regimens in the treatment of lateral malleolus fractures. A healthy ankle joint model and a lateral malleolus fracture internal fixation model were established based on CT data with the aid of some software. Besides, the effects of screw internal fixation modalities on the fracture displacement of fibula fractures, fibula Von Mises stress, and screw Von Mises stress under different physiological conditions and loading conditions were investigated using finite element methods (FEMs) and in vitro physical experiments. The double screw vertical fibular axis internal fixation approach had the lowest fracture displacement of fibula fractures and screw Von Mises stress values; while the double screw vertical fracture line internal fixation approach had the lowest fibula Von Mises stress values. Under different physiological conditions, the magnitude of the peak Von Mises stress of the fibula and screw was ranked as plantarflexion 20° > plantarflexion 10° > neutral position > dorsiflexion 10° > dorsiflexion 20°; and the magnitude of the peak displacement of the fibula fracture breaks was ranked as plantarflexion 20° > plantarflexion 10° > neutral position > dorsiflexion 20° > dorsiflexion 10°. The results of in vitro physical experiments and finite element analyses were in good agreement, which validated the validity of finite element analyses. The vertical fracture line screw implantation method displays a better load-sharing ability; while the vertical fibular axis screw implantation method exhibits a better ability to prevent axial shortening of the fibula and also reduces the risk of screw fatigue damage. Overall, the double screw achieves better therapeutic effects than the single screw. Given that the ankle joint has high stability in the dorsiflexion position, it is recommended to prioritize dorsiflexion rehabilitation training, rather than dorsiflexion and plantarflexion rehabilitation training with too large angles, in the treatment of lateral malleolus fractures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
螺钉内固定对外踝斜骨折生物力学的影响机制。
螺钉内固定治疗外踝斜骨折的稳定性和最佳固定方案在临床实践中尚无定论。本研究探讨了不同螺钉内固定方法对外踝斜骨折生物力学的影响。这些工作有望为治疗外踝骨折的内固定方法和康复训练方案的选择奠定理论基础。基于CT资料,借助软件建立健康踝关节模型和外踝骨折内固定模型。此外,采用有限元法(fem)和体外物理实验研究了不同生理条件和载荷条件下螺钉内固定方式对腓骨骨折骨折位移、腓骨Von Mises应力和螺钉Von Mises应力的影响。双螺钉垂直腓骨轴内固定入路腓骨骨折骨折位移最小,螺钉Von Mises应力值最小;双螺钉垂直骨折线内固定入路腓骨Von Mises应力值最低。在不同生理条件下,腓骨和螺钉的Von Mises应力峰值大小依次为跖屈20°>跖屈10°>中立位>背屈10°>背屈20°;腓骨骨折骨折的峰值位移大小为跖屈20°>跖屈10°>中立位>背屈20°>背屈10°。体外物理实验结果与有限元分析结果吻合较好,验证了有限元分析的有效性。垂直骨折线螺钉植入方式具有较好的载荷分担能力;而垂直腓骨轴螺钉植入法具有更好的防止腓骨轴向缩短的能力,也降低了螺钉疲劳损伤的风险。总的来说,双螺钉比单螺钉治疗效果更好。鉴于踝关节在背屈位置稳定性较高,在治疗外踝骨折时,建议优先进行背屈康复训练,而不是角度过大的背屈和跖屈康复训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
期刊最新文献
Analyzing Spinal Cord Stimulation With Different Electrode Configurations: A Numerical Study. Effects of Congestion in Human Lung Investigated Using Dual-Scale Porous Medium Models. Impact of Convulsive Maternal Seizures on Fetus Dynamics. Modeling Fibrous Tissue in Vascular Fluid-Structure Interaction: A Morphology-Based Pipeline and Biomechanical Significance. A Multiscale Mathematical Model for Fetal Gas Transport and Regulatory Systems During Second Half of Pregnancy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1