Camera-view supervision for bird's-eye-view semantic segmentation.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers in Big Data Pub Date : 2024-11-15 eCollection Date: 2024-01-01 DOI:10.3389/fdata.2024.1431346
Bowen Yang, LinLin Yu, Feng Chen
{"title":"Camera-view supervision for bird's-eye-view semantic segmentation.","authors":"Bowen Yang, LinLin Yu, Feng Chen","doi":"10.3389/fdata.2024.1431346","DOIUrl":null,"url":null,"abstract":"<p><p>Bird's-eye-view Semantic Segmentation (BEVSS) is a powerful and crucial component of planning and control systems in many autonomous vehicles. Current methods rely on end-to-end learning to train models, leading to indirectly supervised and inaccurate camera-to-BEV projections. We propose a novel method of supervising feature extraction with camera-view depth and segmentation information, which improves the quality of feature extraction and projection in the BEVSS pipeline. Our model, evaluated on the nuScenes dataset, shows a 3.8% improvement in Intersection-over-Union (IoU) for vehicle segmentation and a 30-fold reduction in depth error compared to baselines, while maintaining competitive inference times of 32 FPS. This method offers more accurate and reliable BEVSS for real-time autonomous driving systems. The codes and implementation details and code can be found at https://github.com/bluffish/sucam.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1431346"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604745/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1431346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Bird's-eye-view Semantic Segmentation (BEVSS) is a powerful and crucial component of planning and control systems in many autonomous vehicles. Current methods rely on end-to-end learning to train models, leading to indirectly supervised and inaccurate camera-to-BEV projections. We propose a novel method of supervising feature extraction with camera-view depth and segmentation information, which improves the quality of feature extraction and projection in the BEVSS pipeline. Our model, evaluated on the nuScenes dataset, shows a 3.8% improvement in Intersection-over-Union (IoU) for vehicle segmentation and a 30-fold reduction in depth error compared to baselines, while maintaining competitive inference times of 32 FPS. This method offers more accurate and reliable BEVSS for real-time autonomous driving systems. The codes and implementation details and code can be found at https://github.com/bluffish/sucam.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鸟瞰语义分割的摄像机视角监督。
鸟瞰图语义分割(BEVSS)是许多自动驾驶汽车规划和控制系统中强大而关键的组成部分。目前的方法依赖于端到端学习来训练模型,导致间接监督和不准确的相机到bev投影。本文提出了一种利用摄像机视角深度和分割信息监督特征提取的新方法,提高了BEVSS管道中特征提取和投影的质量。我们的模型在nuScenes数据集上进行了评估,结果显示,与基线相比,车辆分割的交叉路口(IoU)提高了3.8%,深度误差降低了30倍,同时保持了32 FPS的竞争推理时间。该方法为实时自动驾驶系统提供了更准确、更可靠的BEVSS。代码和实现细节和代码可以在https://github.com/bluffish/sucam上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
期刊最新文献
Erratum: Edge-level multi-constraint graph pattern matching with lung cancer knowledge graph. An epidemiological extension of the El Farol Bar problem. A review of AI-based radiogenomics in neurodegenerative disease. Cloud computing convergence: integrating computer applications and information management for enhanced efficiency. Next-generation approach to skin disorder prediction employing hybrid deep transfer learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1