A Fast Algorithm for the Real-Valued Combinatorial Pure Exploration of the Multi-Armed Bandit

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2025-01-21 DOI:10.1162/neco_a_01728
Shintaro Nakamura;Masashi Sugiyama
{"title":"A Fast Algorithm for the Real-Valued Combinatorial Pure Exploration of the Multi-Armed Bandit","authors":"Shintaro Nakamura;Masashi Sugiyama","doi":"10.1162/neco_a_01728","DOIUrl":null,"url":null,"abstract":"We study the real-valued combinatorial pure exploration problem in the stochastic multi-armed bandit (R-CPE-MAB). We study the case where the size of the action set is polynomial with respect to the number of arms. In such a case, the R-CPE-MAB can be seen as a special case of the so-called transductive linear bandits. We introduce the combinatorial gap-based exploration (CombGapE) algorithm, whose sample complexity upper-bound-matches the lower bound up to a problem-dependent constant factor. We numerically show that the CombGapE algorithm outperforms existing methods significantly in both synthetic and real-world data sets.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"37 2","pages":"294-310"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10887369/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We study the real-valued combinatorial pure exploration problem in the stochastic multi-armed bandit (R-CPE-MAB). We study the case where the size of the action set is polynomial with respect to the number of arms. In such a case, the R-CPE-MAB can be seen as a special case of the so-called transductive linear bandits. We introduce the combinatorial gap-based exploration (CombGapE) algorithm, whose sample complexity upper-bound-matches the lower bound up to a problem-dependent constant factor. We numerically show that the CombGapE algorithm outperforms existing methods significantly in both synthetic and real-world data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多臂强盗实值组合纯探索的快速算法。
研究随机多臂土匪(R-CPE-MAB)中的实值组合纯勘探问题。我们研究了动作集的大小是关于臂数的多项式的情况。在这种情况下,R-CPE-MAB可以被视为所谓的转导线性强盗的特殊情况。提出了一种基于组合间隙的探索算法(CombGapE),该算法的样本复杂度上界与下界匹配到一个与问题相关的常数因子。数值结果表明,在合成数据集和真实数据集中,CombGapE算法都明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Working Memory and Self-Directed Inner Speech Enhance Multitask Generalization in Active Inference. Effective Learning Rules as Natural Gradient Descent. Neural Associative Skill Memories for Safer Robotics and Modeling Human Sensorimotor Repertoires. Possible Principles for Aligned Structure Learning Agents. Simulated Complex Cells Contribute to Object Recognition Through Representational Untangling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1