{"title":"A Fast Algorithm for the Real-Valued Combinatorial Pure Exploration of the Multi-Armed Bandit.","authors":"Shintaro Nakamura, Masashi Sugiyama","doi":"10.1162/neco_a_01728","DOIUrl":null,"url":null,"abstract":"<p><p>We study the real-valued combinatorial pure exploration problem in the stochastic multi-armed bandit (R-CPE-MAB). We study the case where the size of the action set is polynomial with respect to the number of arms. In such a case, the R-CPE-MAB can be seen as a special case of the so-called transductive linear bandits. We introduce the combinatorial gap-based exploration (CombGapE) algorithm, whose sample complexity upper-bound-matches the lower bound up to a problem-dependent constant factor. We numerically show that the CombGapE algorithm outperforms existing methods significantly in both synthetic and real-world data sets.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"294-310"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01728","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We study the real-valued combinatorial pure exploration problem in the stochastic multi-armed bandit (R-CPE-MAB). We study the case where the size of the action set is polynomial with respect to the number of arms. In such a case, the R-CPE-MAB can be seen as a special case of the so-called transductive linear bandits. We introduce the combinatorial gap-based exploration (CombGapE) algorithm, whose sample complexity upper-bound-matches the lower bound up to a problem-dependent constant factor. We numerically show that the CombGapE algorithm outperforms existing methods significantly in both synthetic and real-world data sets.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.