Visu Pandurangan, Smitha Ponnayyan Sarojam, Pughazendi Narayanan, Murugananthan Velayutham
{"title":"Hybrid deep learning-based skin cancer classification with RPO-SegNet for skin lesion segmentation.","authors":"Visu Pandurangan, Smitha Ponnayyan Sarojam, Pughazendi Narayanan, Murugananthan Velayutham","doi":"10.1080/0954898X.2024.2428705","DOIUrl":null,"url":null,"abstract":"<p><p>Skin melanin lesions are typically identified as tiny patches on the skin, which are impacted by melanocyte cell overgrowth. The number of people with skin cancer is increasing worldwide. Accurate and timely skin cancer identification is critical to reduce the mortality rates. An incorrect diagnosis can be fatal to the patient. To tackle these issues, this article proposes the Recurrent Prototypical Object Segmentation Network (RPO-SegNet) for the segmentation of skin lesions and a hybrid Deep Learning (DL) - based skin cancer classification. The RPO-SegNet is formed by integrating the Recurrent Prototypical Networks (RP-Net), and Object Segmentation Networks (O-SegNet). At first, the input image is taken from a database and forwarded to image pre-processing. Then, the segmentation of skin lesions is accomplished using the proposed RPO-SegNet. After the segmentation, feature extraction is accomplished. Finally, skin cancer classification and detection are accomplished by employing the Fuzzy-based Shepard Convolutional Maxout Network (FSCMN) by combining the Deep Maxout Network (DMN), and Shepard Convolutional Neural Network (ShCNN). The established RPO-SegNet+FSCMN attained improved accuracy, True Negative Rate (TNR), True Positive Rate (TPR), dice coefficient, Jaccard coefficient, and segmentation analysis of 91.985%, 92.735%, 93.485%, 90.902%, 90.164%, and 91.734%.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-28"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2428705","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Skin melanin lesions are typically identified as tiny patches on the skin, which are impacted by melanocyte cell overgrowth. The number of people with skin cancer is increasing worldwide. Accurate and timely skin cancer identification is critical to reduce the mortality rates. An incorrect diagnosis can be fatal to the patient. To tackle these issues, this article proposes the Recurrent Prototypical Object Segmentation Network (RPO-SegNet) for the segmentation of skin lesions and a hybrid Deep Learning (DL) - based skin cancer classification. The RPO-SegNet is formed by integrating the Recurrent Prototypical Networks (RP-Net), and Object Segmentation Networks (O-SegNet). At first, the input image is taken from a database and forwarded to image pre-processing. Then, the segmentation of skin lesions is accomplished using the proposed RPO-SegNet. After the segmentation, feature extraction is accomplished. Finally, skin cancer classification and detection are accomplished by employing the Fuzzy-based Shepard Convolutional Maxout Network (FSCMN) by combining the Deep Maxout Network (DMN), and Shepard Convolutional Neural Network (ShCNN). The established RPO-SegNet+FSCMN attained improved accuracy, True Negative Rate (TNR), True Positive Rate (TPR), dice coefficient, Jaccard coefficient, and segmentation analysis of 91.985%, 92.735%, 93.485%, 90.902%, 90.164%, and 91.734%.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.