Hybrid deep learning-based skin cancer classification with RPO-SegNet for skin lesion segmentation.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-12-03 DOI:10.1080/0954898X.2024.2428705
Visu Pandurangan, Smitha Ponnayyan Sarojam, Pughazendi Narayanan, Murugananthan Velayutham
{"title":"Hybrid deep learning-based skin cancer classification with RPO-SegNet for skin lesion segmentation.","authors":"Visu Pandurangan, Smitha Ponnayyan Sarojam, Pughazendi Narayanan, Murugananthan Velayutham","doi":"10.1080/0954898X.2024.2428705","DOIUrl":null,"url":null,"abstract":"<p><p>Skin melanin lesions are typically identified as tiny patches on the skin, which are impacted by melanocyte cell overgrowth. The number of people with skin cancer is increasing worldwide. Accurate and timely skin cancer identification is critical to reduce the mortality rates. An incorrect diagnosis can be fatal to the patient. To tackle these issues, this article proposes the Recurrent Prototypical Object Segmentation Network (RPO-SegNet) for the segmentation of skin lesions and a hybrid Deep Learning (DL) - based skin cancer classification. The RPO-SegNet is formed by integrating the Recurrent Prototypical Networks (RP-Net), and Object Segmentation Networks (O-SegNet). At first, the input image is taken from a database and forwarded to image pre-processing. Then, the segmentation of skin lesions is accomplished using the proposed RPO-SegNet. After the segmentation, feature extraction is accomplished. Finally, skin cancer classification and detection are accomplished by employing the Fuzzy-based Shepard Convolutional Maxout Network (FSCMN) by combining the Deep Maxout Network (DMN), and Shepard Convolutional Neural Network (ShCNN). The established RPO-SegNet+FSCMN attained improved accuracy, True Negative Rate (TNR), True Positive Rate (TPR), dice coefficient, Jaccard coefficient, and segmentation analysis of 91.985%, 92.735%, 93.485%, 90.902%, 90.164%, and 91.734%.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-28"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2428705","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Skin melanin lesions are typically identified as tiny patches on the skin, which are impacted by melanocyte cell overgrowth. The number of people with skin cancer is increasing worldwide. Accurate and timely skin cancer identification is critical to reduce the mortality rates. An incorrect diagnosis can be fatal to the patient. To tackle these issues, this article proposes the Recurrent Prototypical Object Segmentation Network (RPO-SegNet) for the segmentation of skin lesions and a hybrid Deep Learning (DL) - based skin cancer classification. The RPO-SegNet is formed by integrating the Recurrent Prototypical Networks (RP-Net), and Object Segmentation Networks (O-SegNet). At first, the input image is taken from a database and forwarded to image pre-processing. Then, the segmentation of skin lesions is accomplished using the proposed RPO-SegNet. After the segmentation, feature extraction is accomplished. Finally, skin cancer classification and detection are accomplished by employing the Fuzzy-based Shepard Convolutional Maxout Network (FSCMN) by combining the Deep Maxout Network (DMN), and Shepard Convolutional Neural Network (ShCNN). The established RPO-SegNet+FSCMN attained improved accuracy, True Negative Rate (TNR), True Positive Rate (TPR), dice coefficient, Jaccard coefficient, and segmentation analysis of 91.985%, 92.735%, 93.485%, 90.902%, 90.164%, and 91.734%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
Performance analysis of image retrieval system using deep learning techniques. A novel efficient data storage and data auditing in cloud environment using enhanced child drawing development optimization strategy. Personalized recommendation system to handle skin cancer at early stage based on hybrid model. Robust text-dependent speaker verification system using gender aware Siamese-Triplet Deep Neural Network. Investigation on the reliability calculation method of gravity dam based on CNN-LSTM and Monte Carlo method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1