首页 > 最新文献

Network-Computation in Neural Systems最新文献

英文 中文
RP squeeze U-SegNet model for lesion segmentation and optimization enabled ShuffleNet based multi-level severity diabetic retinopathy classification. RP 挤压 U-SegNet 模型用于病变分割和优化基于 ShuffleNet 的多级严重性糖尿病视网膜病变分类。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-09-25 DOI: 10.1080/0954898X.2024.2395375
Zulaikha Beevi Sulaiman

In Diabetic Retinopathy (DR), the retina is harmed due to the high blood pressure in small blood vessels. Manual screening is time-consuming, which can be overcome by using automated techniques. Hence, this paper proposed a new method for classifying the multi-level severity of DR. Initially, the input fundus image is pre-processed by Non-local means Denoising (NLMD). Then, lesion segmentation is carried out by the Recurrent Prototypical-squeeze U-SegNet (RP-squeeze U-SegNet). Next, feature extraction is effectuated to mine image-level features. DR is categorized as abnormal or normal by ShuffleNet and it is tuned by Fractional War Royale Optimization (FrWRO), and later, if DR is detected, severity classification is performed. Furthermore, the FrWRO-SqueezeNet obtained the maximum performance with sensitivity of 97%, accuracy of 93.8%, specificity of 95.1%, precision of 91.8%, and F-Measure of 94.3%. The devised scheme accurately visualizes abnormal regions in the fundus images. Also, it has the ability to identify the severity levels of DR effectively, which avoids the progression risk to vision loss and proliferative disease.

在糖尿病视网膜病变(DR)中,视网膜因小血管内的高血压而受到损害。人工筛查非常耗时,而使用自动化技术则可以克服这一问题。因此,本文提出了一种新方法,用于对糖尿病视网膜病变的严重程度进行多级分类。首先,对输入的眼底图像进行非局部去噪(NLMD)预处理。然后,利用递归原型挤压 U-SegNet (RP-挤压 U-SegNet)进行病变分割。然后,进行特征提取,挖掘图像级特征。通过 ShuffleNet 将 DR 分为异常或正常,并通过 Fractional War Royale Optimization(FrWRO)对其进行调整,之后,如果检测到 DR,则进行严重程度分类。此外,FrWRO-SqueezeNet 获得了最高性能,灵敏度达 97%,准确度达 93.8%,特异度达 95.1%,精确度达 91.8%,F-Measure 达 94.3%。所设计的方案能准确显示眼底图像中的异常区域。此外,它还能有效识别 DR 的严重程度,从而避免恶化为视力丧失和增殖性疾病的风险。
{"title":"RP squeeze U-SegNet model for lesion segmentation and optimization enabled ShuffleNet based multi-level severity diabetic retinopathy classification.","authors":"Zulaikha Beevi Sulaiman","doi":"10.1080/0954898X.2024.2395375","DOIUrl":"10.1080/0954898X.2024.2395375","url":null,"abstract":"<p><p>In Diabetic Retinopathy (DR), the retina is harmed due to the high blood pressure in small blood vessels. Manual screening is time-consuming, which can be overcome by using automated techniques. Hence, this paper proposed a new method for classifying the multi-level severity of DR. Initially, the input fundus image is pre-processed by Non-local means Denoising (NLMD). Then, lesion segmentation is carried out by the Recurrent Prototypical-squeeze U-SegNet (RP-squeeze U-SegNet). Next, feature extraction is effectuated to mine image-level features. DR is categorized as abnormal or normal by ShuffleNet and it is tuned by Fractional War Royale Optimization (FrWRO), and later, if DR is detected, severity classification is performed. Furthermore, the FrWRO-SqueezeNet obtained the maximum performance with sensitivity of 97%, accuracy of 93.8%, specificity of 95.1%, precision of 91.8%, and F-Measure of 94.3%. The devised scheme accurately visualizes abnormal regions in the fundus images. Also, it has the ability to identify the severity levels of DR effectively, which avoids the progression risk to vision loss and proliferative disease.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1906-1939"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational models advance deep brain stimulation for Parkinson's disease. 计算模型推动了治疗帕金森病的深部脑刺激疗法。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-06-26 DOI: 10.1080/0954898X.2024.2361799
Yongtong Wu, Kejia Hu, Shenquan Liu

Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.

脑深部刺激(DBS)已成为治疗晚期帕金森病(PD)的有效干预手段,但DBS的确切机制仍不清楚。在这篇综述中,我们将讨论 DBS 的历史、基底节(BG)的解剖和内部结构、帕金森病基底节的异常病理变化以及计算模型如何帮助理解和推进 DBS。我们还介绍了两类模型:数学理论模型和临床预测模型。数学理论模型模拟 BG 的神经元或神经网络,以揭示 DBS 的机理原理;而临床预测模型则更关注患者的预后,帮助调整适合每位患者的治疗方案并推进新型电极设计。最后,我们对未来技术提出了见解和展望。
{"title":"Computational models advance deep brain stimulation for Parkinson's disease.","authors":"Yongtong Wu, Kejia Hu, Shenquan Liu","doi":"10.1080/0954898X.2024.2361799","DOIUrl":"10.1080/0954898X.2024.2361799","url":null,"abstract":"<p><p>Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1385-1416"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing effort estimation in global software development using a unique combination of Neuro Fuzzy Logic and Deep Learning Neural Networks (NFDLNN). 利用神经模糊逻辑和深度学习神经网络(NFDLNN)的独特组合,加强全球软件开发中的工作量估算。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-07-21 DOI: 10.1080/0954898X.2024.2376703
Manoj Ray Devadas, Philip Samuel

Effective project planning and management in the global software development landscape relies on addressing major issues like cost estimation and effort allocation. Timely estimation of software development is a critical focus in software engineering research. With the industry increasingly relying on diverse teams worldwide, accurate estimation becomes vital. Software size serves as a common measure for costs and schedules, but advanced estimation methods consider various variables, such as project purpose, personnel expertise, time and efficiency constraints, and technology requirements. Estimating software costs involve significant financial and strategic commitments, making it crucial to address complexity and versatility related to cost drivers. To achieve enhanced accuracy and convergence, we employ the cuckoo algorithm in our proposed NFDLNN (Neuro Fuzzy Logic and Deep Learning Neural Networks) model. Through extensive validation with industrial project data, using Function Point Analysis as the algorithmic models, our NFA model demonstrates high accuracy in software cost approximation, outperforming existing methods insights of MRE of 3.33, BRE of 0.13, and PI of 74.48. Our research contributes to improved project planning and decision-making processes in global software development endeavours.

在全球软件开发领域,有效的项目规划和管理有赖于解决成本估算和精力分配等重大问题。软件开发的及时估算是软件工程研究的一个关键重点。随着该行业越来越依赖于世界各地的不同团队,准确估算变得至关重要。软件规模是衡量成本和进度的常用指标,但先进的估算方法会考虑各种变量,如项目目的、人员专长、时间和效率限制以及技术要求等。软件成本估算涉及重大的财务和战略承诺,因此解决与成本驱动因素相关的复杂性和多变性至关重要。为了提高准确性和收敛性,我们在所提出的 NFDLNN(神经模糊逻辑和深度学习神经网络)模型中采用了杜鹃算法。通过对工业项目数据的广泛验证,并使用功能点分析作为算法模型,我们的 NFA 模型在软件成本近似方面表现出很高的准确性,其 MRE 为 3.33,BRE 为 0.13,PI 为 74.48,均优于现有方法。我们的研究有助于改进全球软件开发工作中的项目规划和决策过程。
{"title":"Enhancing effort estimation in global software development using a unique combination of Neuro Fuzzy Logic and Deep Learning Neural Networks (NFDLNN).","authors":"Manoj Ray Devadas, Philip Samuel","doi":"10.1080/0954898X.2024.2376703","DOIUrl":"10.1080/0954898X.2024.2376703","url":null,"abstract":"<p><p>Effective project planning and management in the global software development landscape relies on addressing major issues like cost estimation and effort allocation. Timely estimation of software development is a critical focus in software engineering research. With the industry increasingly relying on diverse teams worldwide, accurate estimation becomes vital. Software size serves as a common measure for costs and schedules, but advanced estimation methods consider various variables, such as project purpose, personnel expertise, time and efficiency constraints, and technology requirements. Estimating software costs involve significant financial and strategic commitments, making it crucial to address complexity and versatility related to cost drivers. To achieve enhanced accuracy and convergence, we employ the cuckoo algorithm in our proposed NFDLNN (Neuro Fuzzy Logic and Deep Learning Neural Networks) model. Through extensive validation with industrial project data, using Function Point Analysis as the algorithmic models, our NFA model demonstrates high accuracy in software cost approximation, outperforming existing methods insights of MRE of 3.33, BRE of 0.13, and PI of 74.48. Our research contributes to improved project planning and decision-making processes in global software development endeavours.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1606-1626"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images. 改进的阿基米德优化辅助多尺度深度学习分割与扩张集合 CNN 分类法,用于利用 CT 图像检测肺癌。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-07-08 DOI: 10.1080/0954898X.2024.2373127
Shalini Chowdary, Shyamala Bharathi Purushotaman

Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.

要防止肺癌导致的死亡,就必须及早发现肺癌。但是,基于一些深度学习算法的计算机断层扫描(CT)对肺癌的识别并不能提供准确的结果。我们开发了一种新的自适应深度学习,并进行了启发式改进。所提出的框架包括三个部分:(a)图像采集;(b)肺结节分割;(c)肺癌分类。原始 CT 图像通过标准数据源采集。然后通过 Adaptive Multi-Scale Dilated Trans-Unet3+ 进行结节分割。为提高分割精度,该模型的参数通过基于阿基米德优化的修正转移算子(MTO-AO)进行优化。最后,对分割后的图像进行分类程序,即高级稀释集合卷积神经网络(ADECNN),其中它由 Inception、ResNet 和 MobileNet 构建,超参数由 MTO-AO 调整。从这三个网络中,通过基于高排名的分类估算出最终结果。因此,使用多种测量方法对性能进行了研究,并对不同方法进行了比较。因此,模型的研究结果证明了系统检测癌症的效率,并帮助病人获得适当的治疗。
{"title":"An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images.","authors":"Shalini Chowdary, Shyamala Bharathi Purushotaman","doi":"10.1080/0954898X.2024.2373127","DOIUrl":"10.1080/0954898X.2024.2373127","url":null,"abstract":"<p><p>Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1543-1581"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A secure worst elite sailfish optimizer based routing and deep learning for black hole attack detection. 基于路由和深度学习的黑洞攻击检测的安全最差精英旗鱼优化器。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-06-10 DOI: 10.1080/0954898X.2024.2363353
Mandeep Kumar, Jahid Ali

The Wireless Sensor Network (WSN) is susceptible to two kinds of attacks, namely active attack and passive attack. In an active attack, the attacker directly communicates with the target system or network. In contrast, in passive attack, the attacker is in indirect contact with the network. To preserve the functionality and dependability of wireless sensor networks, this research has been conducted recently to detect and mitigate the black hole attacks. In this research, a Deep learning (DL) based black hole attack detection model is designed. The WSN simulation is the beginning stage of this process. Moreover, routing is the key process, where the data is passed to the base station (BS) via the shortest and finest route. The proposed Worst Elite Sailfish Optimization (WESFO) is utilized for routing. Moreover, black hole attack detection is performed in the BS. The Auto Encoder (AE) is employed in attack detection, which is trained with the use of the proposed WESFO algorithm. Additionally, the proposed model is validated in terms of delay, Packet Delivery Rate (PDR), throughput, False-Negative Rate (FNR), and False-Positive Rate (FPR) parameters with the corresponding outcomes like 25.64 s, 94.83%, 119.3, 0.084, and 0.135 are obtained.

无线传感器网络(WSN)容易受到两种攻击,即主动攻击和被动攻击。在主动攻击中,攻击者直接与目标系统或网络通信。相比之下,在被动攻击中,攻击者与网络是间接接触。为了保持无线传感器网络的功能性和可靠性,最近开展了这项研究,以检测和缓解黑洞攻击。本研究设计了一种基于深度学习(DL)的黑洞攻击检测模型。WSN 模拟是这一过程的起始阶段。此外,路由是关键过程,数据通过最短和最细的路由传递到基站(BS)。路由选择采用了所提出的最差精英旗鱼优化(WESFO)方法。此外,还在 BS 中执行黑洞攻击检测。在攻击检测中使用了自动编码器(AE),该编码器是利用提出的 WESFO 算法训练的。此外,提议的模型还在延迟、数据包交付率(PDR)、吞吐量、假阴性率(FNR)和假阳性率(FPR)参数方面进行了验证,并获得了 25.64 秒、94.83%、119.3、0.084 和 0.135 等相应结果。
{"title":"A secure worst elite sailfish optimizer based routing and deep learning for black hole attack detection.","authors":"Mandeep Kumar, Jahid Ali","doi":"10.1080/0954898X.2024.2363353","DOIUrl":"10.1080/0954898X.2024.2363353","url":null,"abstract":"<p><p>The Wireless Sensor Network (WSN) is susceptible to two kinds of attacks, namely active attack and passive attack. In an active attack, the attacker directly communicates with the target system or network. In contrast, in passive attack, the attacker is in indirect contact with the network. To preserve the functionality and dependability of wireless sensor networks, this research has been conducted recently to detect and mitigate the black hole attacks. In this research, a Deep learning (DL) based black hole attack detection model is designed. The WSN simulation is the beginning stage of this process. Moreover, routing is the key process, where the data is passed to the base station (BS) via the shortest and finest route. The proposed Worst Elite Sailfish Optimization (WESFO) is utilized for routing. Moreover, black hole attack detection is performed in the BS. The Auto Encoder (AE) is employed in attack detection, which is trained with the use of the proposed WESFO algorithm. Additionally, the proposed model is validated in terms of delay, Packet Delivery Rate (PDR), throughput, False-Negative Rate (FNR), and False-Positive Rate (FPR) parameters with the corresponding outcomes like 25.64 s, 94.83%, 119.3, 0.084, and 0.135 are obtained.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1417-1442"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fourfold-objective-based cloud privacy preservation model with proposed association rule hiding and deep learning assisted optimal key generation. 基于四重目标的云隐私保护模型,建议关联规则隐藏和深度学习辅助最优密钥生成。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-07-26 DOI: 10.1080/0954898X.2024.2378836
Smita Sharma, Sanjay Tyagi

Numerous studies have been conducted in an attempt to preserve cloud privacy, yet the majority of cutting-edge solutions fall short when it comes to handling sensitive data. This research proposes a "privacy preservation model in the cloud environment". The four stages of recommended security preservation methodology are "identification of sensitive data, generation of an optimal tuned key, suggested data sanitization, and data restoration". Initially, owner's data enters the Sensitive data identification process. The sensitive information in the input (owner's data) is identified via Augmented Dynamic Itemset Counting (ADIC) based Associative Rule Mining Model. Subsequently, the identified sensitive data are sanitized via the newly created tuned key. The generated tuned key is formulated with new fourfold objective-hybrid optimization approach-based deep learning approach. The optimally tuned key is generated with LSTM on the basis of fourfold objectives and the new hybrid MUAOA. The created keys, as well as generated sensitive rules, are fed into the deep learning model. The MUAOA technique is a conceptual blend of standard AOA and CMBO, respectively. As a result, unauthorized people will be unable to access information. Finally, comparative evaluation is undergone and proposed LSTM+MUAOA has achieved higher values on privacy about 5.21 compared to other existing models.

为了保护云隐私,人们进行了大量研究,但大多数先进的解决方案在处理敏感数据时都存在不足。本研究提出了一种 "云环境中的隐私保护模式"。建议的安全保护方法分为四个阶段,即 "敏感数据识别、生成最佳调整密钥、建议数据清理和数据恢复"。最初,所有者数据进入敏感数据识别流程。输入(所有者数据)中的敏感信息通过基于关联规则挖掘模型的增强动态项集计数(ADIC)进行识别。随后,通过新创建的调整密钥对识别出的敏感数据进行净化。生成的调整密钥采用基于深度学习方法的新的四重目标混合优化方法。在四重目标和新的混合 MUAOA 的基础上,利用 LSTM 生成最佳调整密钥。创建的密钥以及生成的敏感规则被输入到深度学习模型中。MUAOA 技术在概念上分别融合了标准 AOA 和 CMBO。因此,未经授权的人将无法访问信息。最后,经过比较评估,与其他现有模型相比,提议的 LSTM+MUAOA 在隐私方面取得了约 5.21 的较高值。
{"title":"A fourfold-objective-based cloud privacy preservation model with proposed association rule hiding and deep learning assisted optimal key generation.","authors":"Smita Sharma, Sanjay Tyagi","doi":"10.1080/0954898X.2024.2378836","DOIUrl":"10.1080/0954898X.2024.2378836","url":null,"abstract":"<p><p>Numerous studies have been conducted in an attempt to preserve cloud privacy, yet the majority of cutting-edge solutions fall short when it comes to handling sensitive data. This research proposes a \"privacy preservation model in the cloud environment\". The four stages of recommended security preservation methodology are \"identification of sensitive data, generation of an optimal tuned key, suggested data sanitization, and data restoration\". Initially, owner's data enters the Sensitive data identification process. The sensitive information in the input (owner's data) is identified via Augmented Dynamic Itemset Counting (ADIC) based Associative Rule Mining Model. Subsequently, the identified sensitive data are sanitized via the newly created tuned key. The generated tuned key is formulated with new fourfold objective-hybrid optimization approach-based deep learning approach. The optimally tuned key is generated with LSTM on the basis of fourfold objectives and the new hybrid MUAOA. The created keys, as well as generated sensitive rules, are fed into the deep learning model. The MUAOA technique is a conceptual blend of standard AOA and CMBO, respectively. As a result, unauthorized people will be unable to access information. Finally, comparative evaluation is undergone and proposed LSTM+MUAOA has achieved higher values on privacy about 5.21 compared to other existing models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1627-1662"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study of early stage Alzheimer's disease classification using various transfer learning CNN frameworks. 使用各种迁移学习 CNN 框架对早期阿尔茨海默病分类的比较研究。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-10-05 DOI: 10.1080/0954898X.2024.2406946
Yajuvendra Pratap Singh, Daya Krishan Lobiyal

The current research explores the improvements in predictive performance and computational efficiency that machine learning and deep learning methods have made over time. Specifically, the application of transfer learning concepts within Convolutional Neural Networks (CNNs) has proved useful for diagnosing and classifying the various stages of Alzheimer's disease. Using base architectures such as Xception, InceptionResNetV2, DenseNet201, InceptionV3, ResNet50, and MobileNetV2, this study extends these models by adding batch normalization (BN), dropout, and dense layers. These enhancements improve the model's effectiveness and precision in addressing the specified medical issue. The proposed model is rigorously validated and evaluated using publicly available Kaggle MRI Alzheimer's data consisting of 1280 testing images and 5120 patient training images. For comprehensive performance evaluation, precision, recall, F1-score, and accuracy metrics are utilized. The findings indicate that the Xception method is the most promising of those considered. Without employing five K-fold techniques, this model obtains a 99% accuracy and 0.135 loss score. In addition, integrating five K-fold methods enhances the accuracy to 99.68% while decreasing the loss score to 0.120. The research further included the evaluation of the Receiver Operating Characteristic Area Under the Curve (ROC-AUC) for various classes and models. As a result, our model may detect and diagnose Alzheimer's disease quickly and accurately.

目前的研究探讨了机器学习和深度学习方法在预测性能和计算效率方面的改进。具体来说,卷积神经网络(CNN)中迁移学习概念的应用已被证明有助于诊断和分类阿尔茨海默病的各个阶段。本研究利用 Xception、InceptionResNetV2、DenseNet201、InceptionV3、ResNet50 和 MobileNetV2 等基本架构,通过添加批量归一化 (BN)、剔除和密集层来扩展这些模型。这些改进提高了模型在解决特定医疗问题时的有效性和精确性。利用公开的 Kaggle 核磁共振阿尔茨海默病数据(包括 1280 张测试图像和 5120 张患者训练图像)对所提出的模型进行了严格的验证和评估。为了进行全面的性能评估,使用了精确度、召回率、F1 分数和准确度指标。研究结果表明,Xception 方法是最有前途的方法。在未采用五次 K 折技术的情况下,该模型的准确率为 99%,损失分值为 0.135。此外,整合五种 K-fold 方法可将准确率提高到 99.68%,同时将损失分降低到 0.120。研究还进一步评估了不同类别和模型的曲线下接收方操作特征区域(ROC-AUC)。因此,我们的模型可以快速准确地检测和诊断阿尔茨海默病。
{"title":"A comparative study of early stage Alzheimer's disease classification using various transfer learning CNN frameworks.","authors":"Yajuvendra Pratap Singh, Daya Krishan Lobiyal","doi":"10.1080/0954898X.2024.2406946","DOIUrl":"10.1080/0954898X.2024.2406946","url":null,"abstract":"<p><p>The current research explores the improvements in predictive performance and computational efficiency that machine learning and deep learning methods have made over time. Specifically, the application of transfer learning concepts within Convolutional Neural Networks (CNNs) has proved useful for diagnosing and classifying the various stages of Alzheimer's disease. Using base architectures such as Xception, InceptionResNetV2, DenseNet201, InceptionV3, ResNet50, and MobileNetV2, this study extends these models by adding batch normalization (BN), dropout, and dense layers. These enhancements improve the model's effectiveness and precision in addressing the specified medical issue. The proposed model is rigorously validated and evaluated using publicly available Kaggle MRI Alzheimer's data consisting of 1280 testing images and 5120 patient training images. For comprehensive performance evaluation, precision, recall, F1-score, and accuracy metrics are utilized. The findings indicate that the Xception method is the most promising of those considered. Without employing five K-fold techniques, this model obtains a 99% accuracy and 0.135 loss score. In addition, integrating five K-fold methods enhances the accuracy to 99.68% while decreasing the loss score to 0.120. The research further included the evaluation of the Receiver Operating Characteristic Area Under the Curve (ROC-AUC) for various classes and models. As a result, our model may detect and diagnose Alzheimer's disease quickly and accurately.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1967-1995"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree hierarchical deep convolutional neural network optimized with sheep flock optimization algorithm for sentiment classification of Twitter data. 采用羊群优化算法优化的树状分层深度卷积神经网络,用于 Twitter 数据的情感分类。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-10-21 DOI: 10.1080/0954898X.2024.2388109
Lakshmanaprakash Sanmugaraja, Pandiaraj Annamalai

The increasing volume of online reviews and tweets poses significant challenges for sentiment classification because of the difficulty in obtaining annotated training data. This paper aims to enhance sentiment classification of Twitter data by developing a robust model that improves classification accuracy and computational efficiency. The proposed method named Tree Hierarchical Deep Convolutional Neural Network optimized with Sheep Flock Optimization Algorithm for Sentiment Classification of Twitter Data (SCTD-THDCNN-SFOA) utilizes the Stanford Sentiment Treebank dataset. The process begins with pre-processing steps including Tokenization, Stop words Elimination, Filtering, Hashtag Removal, and Multiword Grouping. The Gray Level Co-occurrence Matrix Window Adaptive Algorithm is employed to extract features, such as emoticon counts, punctuation counts, gazetteer word existence, n-grams, and part of speech tags. These features are selected using Entropy-Kurtosis-based Feature Selection approach. Finally, the Tree Hierarchical Deep Convolutional Neural Network enhanced by the Sheep Flock Optimization Algorithm is used to categorize the Twitter data as positive, negative, and neutral sentiments. The proposed SCTD-THDCNN-SFOA method demonstrates superior performance, achieving higher accuracy and lesser computation time than the existing models, respectively. The SCTD-THDCNN-SFOA framework significantly improves the accuracy and efficiency of sentiment classification for Twitter data.

由于难以获得有注释的训练数据,在线评论和推文数量的不断增加给情感分类带来了巨大挑战。本文旨在通过开发一种能提高分类准确性和计算效率的稳健模型来增强 Twitter 数据的情感分类。本文提出的方法名为 "利用羊群优化算法对 Twitter 数据进行情感分类的树状分层深度卷积神经网络"(SCTD-THDCNN-SFOA),利用的是斯坦福大学情感树库数据集。该过程从预处理步骤开始,包括标记化、消除停顿词、过滤、去除标签和多词分组。采用灰度共现矩阵窗口自适应算法提取特征,如表情符号计数、标点符号计数、地名词典单词存在性、n-grams 和语篇标签。这些特征采用基于熵-峰度的特征选择方法进行选择。最后,使用羊群优化算法增强的树状分层深度卷积神经网络将 Twitter 数据分为积极情绪、消极情绪和中性情绪。所提出的 SCTD-THDCNN-SFOA 方法性能优越,与现有模型相比,准确率更高,计算时间更短。SCTD-THDCNN-SFOA 框架显著提高了 Twitter 数据情感分类的准确性和效率。
{"title":"Tree hierarchical deep convolutional neural network optimized with sheep flock optimization algorithm for sentiment classification of Twitter data.","authors":"Lakshmanaprakash Sanmugaraja, Pandiaraj Annamalai","doi":"10.1080/0954898X.2024.2388109","DOIUrl":"10.1080/0954898X.2024.2388109","url":null,"abstract":"<p><p>The increasing volume of online reviews and tweets poses significant challenges for sentiment classification because of the difficulty in obtaining annotated training data. This paper aims to enhance sentiment classification of Twitter data by developing a robust model that improves classification accuracy and computational efficiency. The proposed method named Tree Hierarchical Deep Convolutional Neural Network optimized with Sheep Flock Optimization Algorithm for Sentiment Classification of Twitter Data (SCTD-THDCNN-SFOA) utilizes the Stanford Sentiment Treebank dataset. The process begins with pre-processing steps including Tokenization, Stop words Elimination, Filtering, Hashtag Removal, and Multiword Grouping. The Gray Level Co-occurrence Matrix Window Adaptive Algorithm is employed to extract features, such as emoticon counts, punctuation counts, gazetteer word existence, n-grams, and part of speech tags. These features are selected using Entropy-Kurtosis-based Feature Selection approach. Finally, the Tree Hierarchical Deep Convolutional Neural Network enhanced by the Sheep Flock Optimization Algorithm is used to categorize the Twitter data as positive, negative, and neutral sentiments. The proposed SCTD-THDCNN-SFOA method demonstrates superior performance, achieving higher accuracy and lesser computation time than the existing models, respectively. The SCTD-THDCNN-SFOA framework significantly improves the accuracy and efficiency of sentiment classification for Twitter data.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1696-1720"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analyses of weighted superposition attraction-repulsion algorithms in solving difficult optimization problems. 加权叠加吸引-排斥算法在解决困难优化问题中的性能分析。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-06-24 DOI: 10.1080/0954898X.2024.2367481
Adil Baykasoğlu

The purpose of this paper is to test the performance of the recently proposed weighted superposition attraction-repulsion algorithms (WSA and WSAR) on unconstrained continuous optimization test problems and constrained optimization problems. WSAR is a successor of weighted superposition attraction algorithm (WSA). WSAR is established upon the superposition principle from physics and mimics attractive and repulsive movements of solution agents (vectors). Differently from the WSA, WSAR also considers repulsive movements with updated solution move equations. WSAR requires very few algorithm-specific parameters to be set and has good convergence and searching capability. Through extensive computational tests on many benchmark problems including CEC'2015 and CEC'2020 performance of the WSAR is compared against WSA and other metaheuristic algorithms. It is statistically shown that the WSAR algorithm is able to produce good and competitive results in comparison to its predecessor WSA and other metaheuristic algorithms.

本文旨在测试最近提出的加权叠加吸引-排斥算法(WSA 和 WSAR)在无约束连续优化测试问题和约束优化问题上的性能。WSAR 是加权叠加吸引算法(WSA)的后续算法。WSAR 基于物理学中的叠加原理,模仿解代理(向量)的吸引和排斥运动。与 WSA 不同的是,WSAR 还通过更新解移动方程来考虑排斥运动。WSAR 只需设置很少的特定算法参数,并具有良好的收敛性和搜索能力。通过对包括 CEC'2015 和 CEC'2020 在内的许多基准问题进行广泛的计算测试,WSAR 的性能与 WSA 和其他元启发式算法进行了比较。统计结果表明,WSAR 算法与其前身 WSA 和其他元启发式算法相比,能够产生良好且有竞争力的结果。
{"title":"Performance analyses of weighted superposition attraction-repulsion algorithms in solving difficult optimization problems.","authors":"Adil Baykasoğlu","doi":"10.1080/0954898X.2024.2367481","DOIUrl":"10.1080/0954898X.2024.2367481","url":null,"abstract":"<p><p>The purpose of this paper is to test the performance of the recently proposed weighted superposition attraction-repulsion algorithms (WSA and WSAR) on unconstrained continuous optimization test problems and constrained optimization problems. WSAR is a successor of weighted superposition attraction algorithm (WSA). WSAR is established upon the superposition principle from physics and mimics attractive and repulsive movements of solution agents (vectors). Differently from the WSA, WSAR also considers repulsive movements with updated solution move equations. WSAR requires very few algorithm-specific parameters to be set and has good convergence and searching capability. Through extensive computational tests on many benchmark problems including CEC'2015 and CEC'2020 performance of the WSAR is compared against WSA and other metaheuristic algorithms. It is statistically shown that the WSAR algorithm is able to produce good and competitive results in comparison to its predecessor WSA and other metaheuristic algorithms.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1464-1520"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MLNAS: Meta-learning based neural architecture search for automated generation of deep neural networks for plant disease detection tasks. MLNAS:基于元学习的神经架构搜索,用于自动生成植物病害检测任务的深度神经网络。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-07-12 DOI: 10.1080/0954898X.2024.2374852
Sahil Verma, Prabhat Kumar, Jyoti Prakash Singh

Plant diseases pose a significant threat to agricultural productivity worldwide. Convolutional neural networks (CNNs) have achieved state-of-the-art performances on several plant disease detection tasks. However, the manual development of CNN models using an exhaustive approach is a resource-intensive task. Neural Architecture Search (NAS) has emerged as an innovative paradigm that seeks to automate model generation procedures without human intervention. However, the application of NAS in plant disease detection has received limited attention. In this work, we propose a two-stage meta-learning-based neural architecture search system (ML NAS) to automate the generation of CNN models for unseen plant disease detection tasks. The first stage recommends the most suitable benchmark models for unseen plant disease detection tasks based on the prior evaluations of benchmark models on existing plant disease datasets. In the second stage, the proposed NAS operators are employed to optimize the recommended model for the target task. The experimental results showed that the MLNAS system's model outperformed state-of-the-art models on the fruit disease dataset, achieving an accuracy of 99.61%. Furthermore, the MLNAS-generated model outperformed the Progressive NAS model on the 8-class plant disease dataset, achieving an accuracy of 99.8%. Hence, the proposed MLNAS system facilitates faster model development with reduced computational costs.

植物病害对全球农业生产力构成了重大威胁。卷积神经网络(CNN)在多项植物病害检测任务中取得了最先进的性能。然而,使用穷举法手动开发 CNN 模型是一项资源密集型任务。神经架构搜索(NAS)作为一种创新范式应运而生,旨在无需人工干预即可自动生成模型。然而,NAS 在植物病害检测中的应用受到的关注有限。在这项工作中,我们提出了一种基于元学习的两阶段神经架构搜索系统(ML NAS),以自动生成用于未见植物病害检测任务的 CNN 模型。第一阶段根据先前在现有植物病害数据集上对基准模型的评估,为未知植物病害检测任务推荐最合适的基准模型。在第二阶段,利用提出的 NAS 算子针对目标任务优化推荐模型。实验结果表明,MLNAS 系统的模型在水果病害数据集上的表现优于最先进的模型,准确率达到 99.61%。此外,在 8 类植物疾病数据集上,MLNAS 生成的模型的准确率达到了 99.8%,优于 Progressive NAS 模型。因此,所提出的 MLNAS 系统有助于更快地开发模型,同时降低计算成本。
{"title":"MLNAS: Meta-learning based neural architecture search for automated generation of deep neural networks for plant disease detection tasks.","authors":"Sahil Verma, Prabhat Kumar, Jyoti Prakash Singh","doi":"10.1080/0954898X.2024.2374852","DOIUrl":"10.1080/0954898X.2024.2374852","url":null,"abstract":"<p><p>Plant diseases pose a significant threat to agricultural productivity worldwide. Convolutional neural networks (CNNs) have achieved state-of-the-art performances on several plant disease detection tasks. However, the manual development of CNN models using an exhaustive approach is a resource-intensive task. Neural Architecture Search (NAS) has emerged as an innovative paradigm that seeks to automate model generation procedures without human intervention. However, the application of NAS in plant disease detection has received limited attention. In this work, we propose a two-stage meta-learning-based neural architecture search system (ML NAS) to automate the generation of CNN models for unseen plant disease detection tasks. The first stage recommends the most suitable benchmark models for unseen plant disease detection tasks based on the prior evaluations of benchmark models on existing plant disease datasets. In the second stage, the proposed NAS operators are employed to optimize the recommended model for the target task. The experimental results showed that the MLNAS system's model outperformed state-of-the-art models on the fruit disease dataset, achieving an accuracy of 99.61%. Furthermore, the MLNAS-generated model outperformed the Progressive NAS model on the 8-class plant disease dataset, achieving an accuracy of 99.8%. Hence, the proposed MLNAS system facilitates faster model development with reduced computational costs.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1582-1605"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Network-Computation in Neural Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1