Wieland Elger, Nicole Tegtmeyer, Manfred Rohde, Bodo Linz, Christian Hirsch, Steffen Backert
{"title":"Cultivation and molecular characterization of viable Helicobacter pylori from the root canal of 170 deciduous teeth of children.","authors":"Wieland Elger, Nicole Tegtmeyer, Manfred Rohde, Bodo Linz, Christian Hirsch, Steffen Backert","doi":"10.1186/s12964-024-01948-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Helicobacter pylori is a persistent pathogen in the human stomach. However, the proposed transmission route via the oral cavity is not understood and under intense debate. While dozens of studies have shown by PCR that H. pylori DNA is frequently present in the oral cavity, data on the growth and characterization of viable H. pylori from this compartment are very scarce, and it is unclear whether the bacteria can survive in the oral cavity for longer time periods or even colonize it.</p><p><strong>Methods: </strong>Selective growth methods, scanning electron microscopy, urease assay, Western blotting, PCR, and gene sequencing were applied to identify and examine viable H. pylori in decayed milk teeth.</p><p><strong>Results: </strong>Here, we studied viable H. pylori in the plaque and root canals of 170 endodontically infected deciduous teeth that were extracted from 54 children. While H. pylori DNA was detected in several plaque and many root canal samples by PCR, live bacteria could only be cultivated from 28 root canals, but not from plaque. These 28 isolates have been identified as H. pylori by PCR and sequencing of vacA, cagA and htrA genes, phylogenetic analyses, protein expression of major H. pylori virulence factors, and by signal transduction events during infection of human cell lines.</p><p><strong>Conclusions: </strong>Thus, the microaerobic environment in the root canals of endodontically infected teeth may represent a protected and transient reservoir for live H. pylori, especially in individuals with poor dental hygiene, which could serve as a potential source for re-infection of the stomach after antibiotic therapy or for transmission to other individuals.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"578"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01948-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Helicobacter pylori is a persistent pathogen in the human stomach. However, the proposed transmission route via the oral cavity is not understood and under intense debate. While dozens of studies have shown by PCR that H. pylori DNA is frequently present in the oral cavity, data on the growth and characterization of viable H. pylori from this compartment are very scarce, and it is unclear whether the bacteria can survive in the oral cavity for longer time periods or even colonize it.
Methods: Selective growth methods, scanning electron microscopy, urease assay, Western blotting, PCR, and gene sequencing were applied to identify and examine viable H. pylori in decayed milk teeth.
Results: Here, we studied viable H. pylori in the plaque and root canals of 170 endodontically infected deciduous teeth that were extracted from 54 children. While H. pylori DNA was detected in several plaque and many root canal samples by PCR, live bacteria could only be cultivated from 28 root canals, but not from plaque. These 28 isolates have been identified as H. pylori by PCR and sequencing of vacA, cagA and htrA genes, phylogenetic analyses, protein expression of major H. pylori virulence factors, and by signal transduction events during infection of human cell lines.
Conclusions: Thus, the microaerobic environment in the root canals of endodontically infected teeth may represent a protected and transient reservoir for live H. pylori, especially in individuals with poor dental hygiene, which could serve as a potential source for re-infection of the stomach after antibiotic therapy or for transmission to other individuals.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.