Retinoic acid-induced alterations enhance eATP-mediated anti-cancer effects in glioma cells: Implications for P2X7 receptor variants as key players.

Bartosz Szymczak, Anna Pegoraro, Elena De Marchi, Marianna Grignolo, Bartosz Maciejewski, Joanna Czarnecka, Elena Adinolfi, Katarzyna Roszek
{"title":"Retinoic acid-induced alterations enhance eATP-mediated anti-cancer effects in glioma cells: Implications for P2X7 receptor variants as key players.","authors":"Bartosz Szymczak, Anna Pegoraro, Elena De Marchi, Marianna Grignolo, Bartosz Maciejewski, Joanna Czarnecka, Elena Adinolfi, Katarzyna Roszek","doi":"10.1016/j.bbadis.2024.167611","DOIUrl":null,"url":null,"abstract":"<p><p>Retinoic acid (RA) is a small, lipophilic molecule that inhibits cell proliferation and induces differentiation through activation of a family of nuclear receptors (RARs). The therapeutic potential of RA in the treatment of glioma was first evaluated two decades ago, but these attempts were considered not conclusive. Based on the complexity of tumor microenvironment and the role of purinergic signals within TME, we aimed to support RA-induced alterations in glioma cells with extracellular ATP. Our experiments focused on defining the purinergic signaling dynamics of two different human glioma cell lines M059K and M059J subjected to RA-based differentiation protocol. The applied procedure caused considerable modulation in P2X7 receptor variants expression at the gene and protein level, and decrease in ecto-nucleotidase activity. Collectively, it led to the decrease in cell proliferation rate and migration, as well as boosted sensitivity to cytotoxic eATP influence. We confirmed that micromolar concentrations of ATP decreased cell viability by 40 and 20 % in RA-treated M059K and M059J cells, respectively. Moreover, the decrease in migration capability up to 60 % in the presence of 100 μM ATP was observed. Both effects were mediated by P2X7R activation and reversed in the presence of A740003 antagonist, confirming the role of P2X7 receptor. We postulate that retinoic acid-induced changes coupled with micromolar eATP could be effective as anti-cancer treatment affecting the purinergic signaling. The obtained results point out the role of P2X7R variants in influencing potential of glioma cells, as well as the possibility of using these isoforms as therapeutic targets.</p>","PeriodicalId":93896,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":" ","pages":"167611"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bbadis.2024.167611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retinoic acid (RA) is a small, lipophilic molecule that inhibits cell proliferation and induces differentiation through activation of a family of nuclear receptors (RARs). The therapeutic potential of RA in the treatment of glioma was first evaluated two decades ago, but these attempts were considered not conclusive. Based on the complexity of tumor microenvironment and the role of purinergic signals within TME, we aimed to support RA-induced alterations in glioma cells with extracellular ATP. Our experiments focused on defining the purinergic signaling dynamics of two different human glioma cell lines M059K and M059J subjected to RA-based differentiation protocol. The applied procedure caused considerable modulation in P2X7 receptor variants expression at the gene and protein level, and decrease in ecto-nucleotidase activity. Collectively, it led to the decrease in cell proliferation rate and migration, as well as boosted sensitivity to cytotoxic eATP influence. We confirmed that micromolar concentrations of ATP decreased cell viability by 40 and 20 % in RA-treated M059K and M059J cells, respectively. Moreover, the decrease in migration capability up to 60 % in the presence of 100 μM ATP was observed. Both effects were mediated by P2X7R activation and reversed in the presence of A740003 antagonist, confirming the role of P2X7 receptor. We postulate that retinoic acid-induced changes coupled with micromolar eATP could be effective as anti-cancer treatment affecting the purinergic signaling. The obtained results point out the role of P2X7R variants in influencing potential of glioma cells, as well as the possibility of using these isoforms as therapeutic targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bilirubin nanoparticles modulate Treg/Th17 cells and functional metabolism of gut microbiota to inhibit lung adenocarcinoma. Corrigendum to "Ligation of CD180 contributes to endotoxic shock by regulating the accumulation and immunosuppressive activity of myeloid-derived suppressor cells through STAT3." [Biochim Biophys Acta (BBA) - Mol Basis Dis 2019; 1865(3):535-546.]. Deep multi-omics integration approach reveals new molecular features of uterine leiomyosarcoma. Dynamic interplay of Sp1, YY1, and DUX4 in regulating FRG1 transcription with intricate balance. Mild-to-moderate psoriasis is associated with subclinical inflammation in the duodenum and a tendency of disturbed intestinal barrier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1