Protection induced by Streptococcus pneumoniae extracellular vesicles against nasal colonization and invasive infection in mice and the role of PspA.

Vaccine Pub Date : 2025-01-12 Epub Date: 2024-12-01 DOI:10.1016/j.vaccine.2024.126566
Giovanna B Carneiro, Saigopalakrishna S Yerneni, Katharyne Chinaia, Adriano P Araujo, Bailey E Smith, Rory Eutsey, Shaw Camphire, Sarah Werner, Phil Campbell, Eliane N Miyaji, N Luisa Hiller, Maria Leonor S Oliveira
{"title":"Protection induced by Streptococcus pneumoniae extracellular vesicles against nasal colonization and invasive infection in mice and the role of PspA.","authors":"Giovanna B Carneiro, Saigopalakrishna S Yerneni, Katharyne Chinaia, Adriano P Araujo, Bailey E Smith, Rory Eutsey, Shaw Camphire, Sarah Werner, Phil Campbell, Eliane N Miyaji, N Luisa Hiller, Maria Leonor S Oliveira","doi":"10.1016/j.vaccine.2024.126566","DOIUrl":null,"url":null,"abstract":"<p><p>Diseases caused by Streptococcus pneumoniae (pneumococcus) produce a great impact on public health, killing about one million people annually despite available vaccines. Recent research has revealed that the pneumococcus produces extracellular vesicles (pEVs), which display selective cargo and hold potential for vaccine development. Here, we evaluated the immunogenicity and protective potential of pEVs derived from a non-encapsulated pneumococcal strain (R6) using murine models of pneumococcal colonization and invasive pneumonia. Characterization of the immune response revealed that while pEVs contain multiple virulence determinants, immunization with these nanoparticles only induces antibodies against a subset of them. Specifically, subcutaneous immunization elicits a high antibody response against PspA, a modest response against PrsA, and limited response against Ply, MalX and PsaA. The antibody response was further supported by agglutination studies, showing that sera from pEV immunized mice agglutinate pneumococci and that PspA contributes to this response in a strain-dependent manner. Subcutaneous immunization with pEVs provides protection in the invasive pneumonia model whereas nasal immunization results in one log reduction in pneumococcal colonization of the upper respiratory tract. Finally, PspA is a strong contributor to protection in the invasive model and provides a degree of protection even across heterologous families of PspA. We conclude that pEVs demonstrate potential for vaccine development, protecting across capsular types and providing some degree of protection across heterologous PspA variants.</p>","PeriodicalId":94264,"journal":{"name":"Vaccine","volume":" ","pages":"126566"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.vaccine.2024.126566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diseases caused by Streptococcus pneumoniae (pneumococcus) produce a great impact on public health, killing about one million people annually despite available vaccines. Recent research has revealed that the pneumococcus produces extracellular vesicles (pEVs), which display selective cargo and hold potential for vaccine development. Here, we evaluated the immunogenicity and protective potential of pEVs derived from a non-encapsulated pneumococcal strain (R6) using murine models of pneumococcal colonization and invasive pneumonia. Characterization of the immune response revealed that while pEVs contain multiple virulence determinants, immunization with these nanoparticles only induces antibodies against a subset of them. Specifically, subcutaneous immunization elicits a high antibody response against PspA, a modest response against PrsA, and limited response against Ply, MalX and PsaA. The antibody response was further supported by agglutination studies, showing that sera from pEV immunized mice agglutinate pneumococci and that PspA contributes to this response in a strain-dependent manner. Subcutaneous immunization with pEVs provides protection in the invasive pneumonia model whereas nasal immunization results in one log reduction in pneumococcal colonization of the upper respiratory tract. Finally, PspA is a strong contributor to protection in the invasive model and provides a degree of protection even across heterologous families of PspA. We conclude that pEVs demonstrate potential for vaccine development, protecting across capsular types and providing some degree of protection across heterologous PspA variants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of experimental vaccines is ethically permissible during public health emergencies. Guillain-Barré syndrome temporally associated with COVID-19 vaccines - Progress over time. Conceptual debates in the study of canine & feline vaccine hesitancy: A response to Haeder 2023. Corrigendum to "Immunogenicity during 6 months after SARS-CoV-2 infection is significantly different depending on previous COVID-19 vaccine regimens and a booster dose received" [Vaccine 42 (22) (2024) 126025]. Social complexity of a fentanyl vaccine to prevent opioid overdose conference proceedings: Radcliffe Institute for Advanced Study conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1