IONIC NANOMEDICINE STRATEGY TO DEVELOP EFFECTIVE CHEMO-PTT COMBINATION CANCER THERAPEUTICS.

Mujeebat Bashiru, Mavis Forson, Arisha Ishtiaq, Adeniyi Oyebade, Samantha Macchi, Shehzad Sayyed, Nawab Ali, Robert J Griffin, Adegboyega K Oyelere, Noureen Siraj
{"title":"IONIC NANOMEDICINE STRATEGY TO DEVELOP EFFECTIVE CHEMO-PTT COMBINATION CANCER THERAPEUTICS.","authors":"Mujeebat Bashiru, Mavis Forson, Arisha Ishtiaq, Adeniyi Oyebade, Samantha Macchi, Shehzad Sayyed, Nawab Ali, Robert J Griffin, Adegboyega K Oyelere, Noureen Siraj","doi":"10.5281/zenodo.14146024","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, a detailed investigation of nanodrugs derived by combining a chemotherapy (chemo) and photothermal therapy (PTT) approaches to enhance chemo drug efficacy is presented. Tamoxifen and its metabolite; N-desmethyltamoxifen are the selected chemo drugs that were electrostatically attached with a PTT agent, NaIR820, via a metathesis approach to develop two different ionic material (IM)-based chemo-PTT drugs. Ionic nanomaterials (INMs) were synthesized using reprecipitation method, and these carrier- free nanoparticles were characterized in detail. Photophysical properties of NaIR820 parent compound, and their derived chemo-PTT IMs and INMs revealed significant alterations in absorption and fluorescence emission spectra of IR820. Photophysical results demonstrated that INMs exhibited promising characteristics as photothermal agents that are beneficial for light mediated therapy. Photothermal conversion efficiency and reactive oxygen quantum yield of INMs and IMs also improved significantly in comparison to the parent NaIR820 compound. In vitro cell viability studies demonstrated improved dark and light cytotoxicity of chemo-PTT INMs as compared to treatments that involved either the mixture of both soluble parent drugs and chemo or PTT drugs independently. Moreso, apoptotic cell death signal was greatly enhanced for the INMs as opposed to the parent chemo drugs.</p>","PeriodicalId":520317,"journal":{"name":"World journal of pharmaceutical science and research","volume":"3 5","pages":"454-478"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of pharmaceutical science and research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.14146024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a detailed investigation of nanodrugs derived by combining a chemotherapy (chemo) and photothermal therapy (PTT) approaches to enhance chemo drug efficacy is presented. Tamoxifen and its metabolite; N-desmethyltamoxifen are the selected chemo drugs that were electrostatically attached with a PTT agent, NaIR820, via a metathesis approach to develop two different ionic material (IM)-based chemo-PTT drugs. Ionic nanomaterials (INMs) were synthesized using reprecipitation method, and these carrier- free nanoparticles were characterized in detail. Photophysical properties of NaIR820 parent compound, and their derived chemo-PTT IMs and INMs revealed significant alterations in absorption and fluorescence emission spectra of IR820. Photophysical results demonstrated that INMs exhibited promising characteristics as photothermal agents that are beneficial for light mediated therapy. Photothermal conversion efficiency and reactive oxygen quantum yield of INMs and IMs also improved significantly in comparison to the parent NaIR820 compound. In vitro cell viability studies demonstrated improved dark and light cytotoxicity of chemo-PTT INMs as compared to treatments that involved either the mixture of both soluble parent drugs and chemo or PTT drugs independently. Moreso, apoptotic cell death signal was greatly enhanced for the INMs as opposed to the parent chemo drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IONIC NANOMEDICINE STRATEGY TO DEVELOP EFFECTIVE CHEMO-PTT COMBINATION CANCER THERAPEUTICS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1