Rui Zhou, Igor Vinograd, Michihiro Hirata, Tao Wu, Hadrien Mayaffre, Steffen Krämer, W. N. Hardy, Ruixing Liang, D. A. Bonn, Toshinao Loew, Juan Porras, Bernhard Keimer, Marc-Henri Julien
{"title":"Signatures of two gaps in the spin susceptibility of a cuprate superconductor","authors":"Rui Zhou, Igor Vinograd, Michihiro Hirata, Tao Wu, Hadrien Mayaffre, Steffen Krämer, W. N. Hardy, Ruixing Liang, D. A. Bonn, Toshinao Loew, Juan Porras, Bernhard Keimer, Marc-Henri Julien","doi":"10.1038/s41567-024-02692-w","DOIUrl":null,"url":null,"abstract":"<p>A fundamental obstacle to understanding high-temperature superconducting cuprates is that the occurrence of superconductivity hinders the observation of the normal-state properties at low temperature. One important property illustrating this issue is the spin susceptibility: its decrease upon cooling in the normal state is considered as evidence of pseudogap behaviour. However, unambiguous interpretation of this decrease has been impossible, as the crucial low-temperature data inevitably reflect the superconducting pairing rather than the normal state. Here we measure the spin susceptibility of YBa<sub>2</sub>Cu<sub>3</sub>O<sub><i>y</i></sub> at low temperature while suppressing superconductivity in high magnetic field. We found that there are two thermally activated contributions, each of which comes from a different gap, alongside a residual component due to gapless excitations. We relate these two distinct gaps to short-range charge density waves and to the formation of singlets, as occurs in certain quantum spin systems. Both phenomena contribute to the pseudogap at low temperature, supplementing the short-lived antiferromagnetism that initiates pseudogap behaviour at high temperatures. We, therefore, propose that the pseudogap should be regarded as a composite property and that, when not undergoing spin-stripe ordering, underdoped cuprates tend to form short-range spin singlets.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"53 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02692-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A fundamental obstacle to understanding high-temperature superconducting cuprates is that the occurrence of superconductivity hinders the observation of the normal-state properties at low temperature. One important property illustrating this issue is the spin susceptibility: its decrease upon cooling in the normal state is considered as evidence of pseudogap behaviour. However, unambiguous interpretation of this decrease has been impossible, as the crucial low-temperature data inevitably reflect the superconducting pairing rather than the normal state. Here we measure the spin susceptibility of YBa2Cu3Oy at low temperature while suppressing superconductivity in high magnetic field. We found that there are two thermally activated contributions, each of which comes from a different gap, alongside a residual component due to gapless excitations. We relate these two distinct gaps to short-range charge density waves and to the formation of singlets, as occurs in certain quantum spin systems. Both phenomena contribute to the pseudogap at low temperature, supplementing the short-lived antiferromagnetism that initiates pseudogap behaviour at high temperatures. We, therefore, propose that the pseudogap should be regarded as a composite property and that, when not undergoing spin-stripe ordering, underdoped cuprates tend to form short-range spin singlets.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.