Pub Date : 2024-11-18DOI: 10.1038/s41567-024-02676-w
Youngshin Kim, Alfonso Lanuza, Dominik Schneble
The cooperative modification of spontaneous radiative decay exemplifies a many-emitter effect in quantum optics. So far, its experimental realizations have relied on interactions mediated by rapidly escaping photons, which do not play an active role in the emitter dynamics. Here we use a platform of ultracold atoms in a one-dimensional optical lattice geometry to explore cooperative non-Markovian dynamics of synthetic quantum emitters that decay by radiating slow atomic matter waves. By preparing and manipulating arrays of emitters hosting weakly and strongly interacting many-body phases of excitations, we demonstrate directional collective emission and study the interplay between retardation and super- and subradiant dynamics. Moreover, we directly observe the spontaneous buildup of coherence among emitters. Our results on collective radiative dynamics establish ultracold matter waves as a versatile tool for studying many-body quantum optics in spatially extended and ordered systems.
{"title":"Super- and subradiant dynamics of quantum emitters mediated by atomic matter waves","authors":"Youngshin Kim, Alfonso Lanuza, Dominik Schneble","doi":"10.1038/s41567-024-02676-w","DOIUrl":"https://doi.org/10.1038/s41567-024-02676-w","url":null,"abstract":"<p>The cooperative modification of spontaneous radiative decay exemplifies a many-emitter effect in quantum optics. So far, its experimental realizations have relied on interactions mediated by rapidly escaping photons, which do not play an active role in the emitter dynamics. Here we use a platform of ultracold atoms in a one-dimensional optical lattice geometry to explore cooperative non-Markovian dynamics of synthetic quantum emitters that decay by radiating slow atomic matter waves. By preparing and manipulating arrays of emitters hosting weakly and strongly interacting many-body phases of excitations, we demonstrate directional collective emission and study the interplay between retardation and super- and subradiant dynamics. Moreover, we directly observe the spontaneous buildup of coherence among emitters. Our results on collective radiative dynamics establish ultracold matter waves as a versatile tool for studying many-body quantum optics in spatially extended and ordered systems.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"8 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-23DOI: 10.1038/s41567-023-02244-8
Tianxiang Dai, Yutian Ao, Jun Mao, Yan Yang, Yun Zheng, Chonghao Zhai, Yandong Li, Jingze Yuan, Bo Tang, Zhihua Li, Jun Luo, Wenwu Wang, Xiaoyong Hu, Qihuang Gong, Jianwei Wang
Manipulating topological invariants is possible by modifying the global properties of optical devices to alter their band structures. This could be achieved by statically altering devices or dynamically reconfiguring devices with considerably different geometric parameters, even though it inhibits switching speed. Recently, optical nonlinearity has emerged as a tool for tailoring topological and non-Hermitian (NH) properties, promising fast manipulation of topological phases. In this work, we observe topologically protected NH phase transitions driven by optical nonlinearity in a silicon nanophotonic Floquet topological insulator. The phase transition occurs from forbidden bandgaps to NH conducting edge modes, which emerge at a nonlinearity-induced gain–loss junction along the boundaries of a topological insulator. We find static NH edge modes and dynamic phase transitions involving exceptional points at a speed of hundreds of picoseconds, which inherently retain topological protections against fabrication imperfections. This work shows an interplay between topology and non-Hermiticity by means of nonlinear optics, and it provides a way of manipulating multiple phase transitions at high speeds that is applicable to many other materials with strong nonlinearities, which could promote the development of unconventionally robust light-controlled devices for classical and quantum applications. The phase transition from a topologically trivial state to non-Hermitian conducting edge modes can be controlled by optical nonlinearities, achieving picosecond switching speeds.
{"title":"Non-Hermitian topological phase transitions controlled by nonlinearity","authors":"Tianxiang Dai, Yutian Ao, Jun Mao, Yan Yang, Yun Zheng, Chonghao Zhai, Yandong Li, Jingze Yuan, Bo Tang, Zhihua Li, Jun Luo, Wenwu Wang, Xiaoyong Hu, Qihuang Gong, Jianwei Wang","doi":"10.1038/s41567-023-02244-8","DOIUrl":"10.1038/s41567-023-02244-8","url":null,"abstract":"Manipulating topological invariants is possible by modifying the global properties of optical devices to alter their band structures. This could be achieved by statically altering devices or dynamically reconfiguring devices with considerably different geometric parameters, even though it inhibits switching speed. Recently, optical nonlinearity has emerged as a tool for tailoring topological and non-Hermitian (NH) properties, promising fast manipulation of topological phases. In this work, we observe topologically protected NH phase transitions driven by optical nonlinearity in a silicon nanophotonic Floquet topological insulator. The phase transition occurs from forbidden bandgaps to NH conducting edge modes, which emerge at a nonlinearity-induced gain–loss junction along the boundaries of a topological insulator. We find static NH edge modes and dynamic phase transitions involving exceptional points at a speed of hundreds of picoseconds, which inherently retain topological protections against fabrication imperfections. This work shows an interplay between topology and non-Hermiticity by means of nonlinear optics, and it provides a way of manipulating multiple phase transitions at high speeds that is applicable to many other materials with strong nonlinearities, which could promote the development of unconventionally robust light-controlled devices for classical and quantum applications. The phase transition from a topologically trivial state to non-Hermitian conducting edge modes can be controlled by optical nonlinearities, achieving picosecond switching speeds.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 1","pages":"101-108"},"PeriodicalIF":19.6,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-23DOI: 10.1038/s41567-023-02211-3
Jiangbin Gong, Ching Hua Lee
A nonlinear optical approach has now enabled picosecond control of a complex band structure, driving a non-Hermitian topological phase transition across an exceptional-point singularity.
现在,一种非线性光学方法实现了对复杂带状结构的皮秒级控制,推动了跨越例外点奇点的非赫米提拓扑相变。
{"title":"Topological phase transitions have never been faster","authors":"Jiangbin Gong, Ching Hua Lee","doi":"10.1038/s41567-023-02211-3","DOIUrl":"10.1038/s41567-023-02211-3","url":null,"abstract":"A nonlinear optical approach has now enabled picosecond control of a complex band structure, driving a non-Hermitian topological phase transition across an exceptional-point singularity.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 1","pages":"12-13"},"PeriodicalIF":19.6,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1038/s41567-023-02237-7
Bahadur Singh
Understanding lattice-geometry-driven electronic structure and orbital character in a titanium-based superconducting kagome metal provides insights into the non-trivial topology and electronic nematicity of correlated quantum matter.
{"title":"Rotation rearranges electrons","authors":"Bahadur Singh","doi":"10.1038/s41567-023-02237-7","DOIUrl":"10.1038/s41567-023-02237-7","url":null,"abstract":"Understanding lattice-geometry-driven electronic structure and orbital character in a titanium-based superconducting kagome metal provides insights into the non-trivial topology and electronic nematicity of correlated quantum matter.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 12","pages":"1757-1758"},"PeriodicalIF":19.6,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.1038/s41567-023-02245-7
Hendrik Weimer
The simulation of open quantum many-body systems is one of the hardest tasks in computational physics. Now, quantum computers are close to answering crucial questions for such systems in a regime that classical computers cannot reach.
{"title":"Quantum simulation gets openly critical","authors":"Hendrik Weimer","doi":"10.1038/s41567-023-02245-7","DOIUrl":"10.1038/s41567-023-02245-7","url":null,"abstract":"The simulation of open quantum many-body systems is one of the hardest tasks in computational physics. Now, quantum computers are close to answering crucial questions for such systems in a regime that classical computers cannot reach.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 12","pages":"1753-1754"},"PeriodicalIF":19.6,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.1038/s41567-023-02240-y
T. E. O’Brien, G. Anselmetti, F. Gkritsis, V. E. Elfving, S. Polla, W. J. Huggins, O. Oumarou, K. Kechedzhi, D. Abanin, R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, K. Anderson, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, J. C. Bardin, A. Bengtsson, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, J. Campero, Z. Chen, B. Chiaro, D. Chik, J. Cogan, R. Collins, P. Conner, W. Courtney, A. L. Crook, B. Curtin, D. M. Debroy, S. Demura, I. Drozdov, A. Dunsworth, C. Erickson, L. Faoro, E. Farhi, R. Fatemi, V. S. Ferreira, L. Flores Burgos, E. Forati, A. G. Fowler, B. Foxen, W. Giang, C. Gidney, D. Gilboa, M. Giustina, R. Gosula, A. Grajales Dau, J. A. Gross, S. Habegger, M. C. Hamilton, M. Hansen, M. P. Harrigan, S. D. Harrington, P. Heu, M. R. Hoffmann, S. Hong, T. Huang, A. Huff, L. B. Ioffe, S. V. Isakov, J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, T. Khattar, M. Khezri, M. Kieferová, S. Kim, P. V. Klimov, A. R. Klots, A. N. Korotkov, F. Kostritsa, J. M. Kreikebaum, D. Landhuis, P. Laptev, K.-M. Lau, L. Laws, J. Lee, K. Lee, B. J. Lester, A. T. Lill, W. Liu, W. P. Livingston, A. Locharla, F. D. Malone, S. Mandrà, O. Martin, S. Martin, J. R. McClean, T. McCourt, M. McEwen, X. Mi, A. Mieszala, K. C. Miao, M. Mohseni, S. Montazeri, A. Morvan, R. Movassagh, W. Mruczkiewicz, O. Naaman, M. Neeley, C. Neill, A. Nersisyan, M. Newman, J. H. Ng, A. Nguyen, M. Nguyen, M. Y. Niu, S. Omonije, A. Opremcak, A. Petukhov, R. Potter, L. P. Pryadko, C. Quintana, C. Rocque, P. Roushan, N. Saei, D. Sank, K. Sankaragomathi, K. J. Satzinger, H. F. Schurkus, C. Schuster, M. J. Shearn, A. Shorter, N. Shutty, V. Shvarts, J. Skruzny, W. C. Smith, R. D. Somma, G. Sterling, D. Strain, M. Szalay, D. Thor, A. Torres, G. Vidal, B. Villalonga, C. Vollgraff Heidweiller, T. White, B. W. K. Woo, C. Xing, Z. J. Yao, P. Yeh, J. Yoo, G. Young, A. Zalcman, Y. Zhang, N. Zhu, N. Zobrist, D. Bacon, S. Boixo, Y. Chen, J. Hilton, J. Kelly, E. Lucero, A. Megrant, H. Neven, V. Smelyanskiy, C. Gogolin, R. Babbush, N. C. Rubin
An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Before fault-tolerant quantum computing, robust error-mitigation strategies were necessary to continue this growth. Here, we validate recently introduced error-mitigation strategies that exploit the expectation that the ideal output of a quantum algorithm would be a pure state. We consider the task of simulating electron systems in the seniority-zero subspace where all electrons are paired with their opposite spin. This affords a computational stepping stone to a fully correlated model. We compare the performance of error mitigations on the basis of doubling quantum resources in time or in space on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques such as postselection. We study how the gain from error mitigation scales with the system size and observe a polynomial suppression of error with increased resources. Extrapolation of our results indicates that substantial hardware improvements will be required for classically intractable variational chemistry simulations. It is hoped that simulations of molecules and materials will provide a near-term application of quantum computers. A study of the performance of error mitigation highlights the obstacles to scaling up these calculations to practically useful sizes.
{"title":"Purification-based quantum error mitigation of pair-correlated electron simulations","authors":"T. E. O’Brien, G. Anselmetti, F. Gkritsis, V. E. Elfving, S. Polla, W. J. Huggins, O. Oumarou, K. Kechedzhi, D. Abanin, R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, K. Anderson, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, J. C. Bardin, A. Bengtsson, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, J. Campero, Z. Chen, B. Chiaro, D. Chik, J. Cogan, R. Collins, P. Conner, W. Courtney, A. L. Crook, B. Curtin, D. M. Debroy, S. Demura, I. Drozdov, A. Dunsworth, C. Erickson, L. Faoro, E. Farhi, R. Fatemi, V. S. Ferreira, L. Flores Burgos, E. Forati, A. G. Fowler, B. Foxen, W. Giang, C. Gidney, D. Gilboa, M. Giustina, R. Gosula, A. Grajales Dau, J. A. Gross, S. Habegger, M. C. Hamilton, M. Hansen, M. P. Harrigan, S. D. Harrington, P. Heu, M. R. Hoffmann, S. Hong, T. Huang, A. Huff, L. B. Ioffe, S. V. Isakov, J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, T. Khattar, M. Khezri, M. Kieferová, S. Kim, P. V. Klimov, A. R. Klots, A. N. Korotkov, F. Kostritsa, J. M. Kreikebaum, D. Landhuis, P. Laptev, K.-M. Lau, L. Laws, J. Lee, K. Lee, B. J. Lester, A. T. Lill, W. Liu, W. P. Livingston, A. Locharla, F. D. Malone, S. Mandrà, O. Martin, S. Martin, J. R. McClean, T. McCourt, M. McEwen, X. Mi, A. Mieszala, K. C. Miao, M. Mohseni, S. Montazeri, A. Morvan, R. Movassagh, W. Mruczkiewicz, O. Naaman, M. Neeley, C. Neill, A. Nersisyan, M. Newman, J. H. Ng, A. Nguyen, M. Nguyen, M. Y. Niu, S. Omonije, A. Opremcak, A. Petukhov, R. Potter, L. P. Pryadko, C. Quintana, C. Rocque, P. Roushan, N. Saei, D. Sank, K. Sankaragomathi, K. J. Satzinger, H. F. Schurkus, C. Schuster, M. J. Shearn, A. Shorter, N. Shutty, V. Shvarts, J. Skruzny, W. C. Smith, R. D. Somma, G. Sterling, D. Strain, M. Szalay, D. Thor, A. Torres, G. Vidal, B. Villalonga, C. Vollgraff Heidweiller, T. White, B. W. K. Woo, C. Xing, Z. J. Yao, P. Yeh, J. Yoo, G. Young, A. Zalcman, Y. Zhang, N. Zhu, N. Zobrist, D. Bacon, S. Boixo, Y. Chen, J. Hilton, J. Kelly, E. Lucero, A. Megrant, H. Neven, V. Smelyanskiy, C. Gogolin, R. Babbush, N. C. Rubin","doi":"10.1038/s41567-023-02240-y","DOIUrl":"10.1038/s41567-023-02240-y","url":null,"abstract":"An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Before fault-tolerant quantum computing, robust error-mitigation strategies were necessary to continue this growth. Here, we validate recently introduced error-mitigation strategies that exploit the expectation that the ideal output of a quantum algorithm would be a pure state. We consider the task of simulating electron systems in the seniority-zero subspace where all electrons are paired with their opposite spin. This affords a computational stepping stone to a fully correlated model. We compare the performance of error mitigations on the basis of doubling quantum resources in time or in space on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques such as postselection. We study how the gain from error mitigation scales with the system size and observe a polynomial suppression of error with increased resources. Extrapolation of our results indicates that substantial hardware improvements will be required for classically intractable variational chemistry simulations. It is hoped that simulations of molecules and materials will provide a near-term application of quantum computers. A study of the performance of error mitigation highlights the obstacles to scaling up these calculations to practically useful sizes.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 12","pages":"1787-1792"},"PeriodicalIF":19.6,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-023-02240-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.1038/s41567-023-02243-9
Jie Dong, Hailong Peng, Hui Wang, Yang Tong, Yutian Wang, Wojciech Dmowski, Takeshi Egami, Baoan Sun, Weihua Wang, Haiyang Bai
The atomic-scale structural rearrangement of glasses on applied stress is central to the understanding of their macroscopic mechanical properties and behaviour. However, experimentally resolving the atomic-scale structural changes of a deformed glass remains challenging due to the disordered nature of the glass structure. Conventional structural analyses such as X-ray diffraction are based on the assumption of structural isotropy and hence cannot discern the subtle atomic-scale structural rearrangement induced by deformation. Here we show that structural anisotropy correlates with non-affine atomic displacements—meaning those that do not preserve parallel lines in the atomic structure—in various types of glass. This serves as an approach for identifying the atomic-scale non-affine deformation in glasses. We also uncover the atomic-level mechanism responsible for plastic flow, which differs between metallic glasses and covalent glasses. The non-affine structural rearrangements in metallic glasses are mediated through the stretching or contraction of atomic bonds. The non-affinity of covalent glasses that occurs in a less localized manner is mediated through the rotation of atomic bonds or chains without changing the bond length. These findings provide key ingredients for exploring the atomic-scale process governing the macroscopic deformation of amorphous solids. Resolving the structural changes of a deformed glass on the atomic scale is challenging due to its disordered nature. Now, high-energy diffraction measurements show that non-line-preserving atomic displacements in glasses correlate with structural anisotropy.
玻璃在外加应力作用下的原子尺度结构重排是了解其宏观机械特性和行为的核心。然而,由于玻璃结构的无序性,在实验中解析变形玻璃的原子尺度结构变化仍然具有挑战性。传统的结构分析(如 X 射线衍射)基于结构各向同性的假设,因此无法分辨变形引起的微妙的原子尺度结构重排。在这里,我们展示了结构各向异性与非正交原子位移(即原子结构中不保留平行线的位移)在各类玻璃中的相关性。这为识别玻璃中原子尺度的非正交变形提供了一种方法。我们还揭示了金属玻璃和共价玻璃塑性流动的原子级机制。金属玻璃中的非亲和性结构重排是通过原子键的拉伸或收缩实现的。共价玻璃的非亲和性以较小的局部方式发生,是通过原子键或原子链的旋转而不改变键的长度来介导的。这些发现为探索无定形固体宏观变形的原子尺度过程提供了关键要素。由于玻璃的无序性,在原子尺度上解析变形玻璃的结构变化具有挑战性。现在,高能衍射测量结果表明,玻璃中非线性原子位移与结构各向异性相关。
{"title":"Non-affine atomic rearrangement of glasses through stress-induced structural anisotropy","authors":"Jie Dong, Hailong Peng, Hui Wang, Yang Tong, Yutian Wang, Wojciech Dmowski, Takeshi Egami, Baoan Sun, Weihua Wang, Haiyang Bai","doi":"10.1038/s41567-023-02243-9","DOIUrl":"10.1038/s41567-023-02243-9","url":null,"abstract":"The atomic-scale structural rearrangement of glasses on applied stress is central to the understanding of their macroscopic mechanical properties and behaviour. However, experimentally resolving the atomic-scale structural changes of a deformed glass remains challenging due to the disordered nature of the glass structure. Conventional structural analyses such as X-ray diffraction are based on the assumption of structural isotropy and hence cannot discern the subtle atomic-scale structural rearrangement induced by deformation. Here we show that structural anisotropy correlates with non-affine atomic displacements—meaning those that do not preserve parallel lines in the atomic structure—in various types of glass. This serves as an approach for identifying the atomic-scale non-affine deformation in glasses. We also uncover the atomic-level mechanism responsible for plastic flow, which differs between metallic glasses and covalent glasses. The non-affine structural rearrangements in metallic glasses are mediated through the stretching or contraction of atomic bonds. The non-affinity of covalent glasses that occurs in a less localized manner is mediated through the rotation of atomic bonds or chains without changing the bond length. These findings provide key ingredients for exploring the atomic-scale process governing the macroscopic deformation of amorphous solids. Resolving the structural changes of a deformed glass on the atomic scale is challenging due to its disordered nature. Now, high-energy diffraction measurements show that non-line-preserving atomic displacements in glasses correlate with structural anisotropy.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 12","pages":"1896-1903"},"PeriodicalIF":19.6,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.1038/s41567-023-02228-8
Andrea Merlone, Chiara Musacchio, Walter Bich
Metrology and meteorology: just two letters separating two similar and frequently confused words. Andrea Merlone, Chiara Musacchio and Walter Bich tell us about these different disciplines and ways in which they collaborate.
计量学和气象学:仅两个字母就将两个相似但经常混淆的词分开。Andrea Merlone、Chiara Musacchio 和 Walter Bich 向我们介绍了这两个不同的学科及其合作方式。
{"title":"A difference of consequence","authors":"Andrea Merlone, Chiara Musacchio, Walter Bich","doi":"10.1038/s41567-023-02228-8","DOIUrl":"10.1038/s41567-023-02228-8","url":null,"abstract":"Metrology and meteorology: just two letters separating two similar and frequently confused words. Andrea Merlone, Chiara Musacchio and Walter Bich tell us about these different disciplines and ways in which they collaborate.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 10","pages":"1518-1518"},"PeriodicalIF":19.6,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.1038/s41567-023-02227-9
Nick Oikonomeas-Koppasis, Peter Schall
Currently, a general framework explaining the fundamental dynamic transitions from solid to fluid of mechanically probed soft materials is lacking. Now, a unifying van der Waals-like model is proposed that describes the dynamic solid–liquid transition in the rheology of these materials.
{"title":"Soft matter in the loop","authors":"Nick Oikonomeas-Koppasis, Peter Schall","doi":"10.1038/s41567-023-02227-9","DOIUrl":"10.1038/s41567-023-02227-9","url":null,"abstract":"Currently, a general framework explaining the fundamental dynamic transitions from solid to fluid of mechanically probed soft materials is lacking. Now, a unifying van der Waals-like model is proposed that describes the dynamic solid–liquid transition in the rheology of these materials.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 11","pages":"1554-1555"},"PeriodicalIF":19.6,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}