首页 > 最新文献

Nature Physics最新文献

英文 中文
Uncloneable encryption from decoupling 解耦后的不可克隆加密
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-04 DOI: 10.1038/s41567-025-03154-7
Archishna Bhattacharyya, Eric Culf
{"title":"Uncloneable encryption from decoupling","authors":"Archishna Bhattacharyya, Eric Culf","doi":"10.1038/s41567-025-03154-7","DOIUrl":"https://doi.org/10.1038/s41567-025-03154-7","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"34 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classically impossible cryptography 经典不可能的密码学
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-04 DOI: 10.1038/s41567-026-03169-8
Prabhanjan Ananth
{"title":"Classically impossible cryptography","authors":"Prabhanjan Ananth","doi":"10.1038/s41567-026-03169-8","DOIUrl":"https://doi.org/10.1038/s41567-026-03169-8","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"92 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective excitation of work-generating cycles in non-reciprocal living solids 非互易活性固体中工作生成循环的选择性激发
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-03 DOI: 10.1038/s41567-026-03178-7
Yu-Chen Chao, Shreyas Gokhale, Lisa Lin, Alasdair Hastewell, Alexandru Bacanu, Yuchao Chen, Junang Li, Jinghui Liu, Hyunseok Lee, Jörn Dunkel, Nikta Fakhri
Emergent non-reciprocity in active matter drives the formation of self-organized states that transcend the behaviours of equilibrium systems. Here we show that active solids composed of living starfish embryos spontaneously transition between stable fluctuating and stable oscillatory steady states. The non-equilibrium steady states arise from two distinct chiral symmetry-breaking mechanisms at the microscopic scale: the spinning of individual embryos resulting in a macroscopic odd elastic response and the precession of their rotation axis leading to active gyroelasticity. In the oscillatory state, we observe long-wavelength optical vibrational modes that can be excited through mechanical perturbations. These excitable non-reciprocal solids exhibit non-equilibrium work generation without cycling protocols, due to coupled vibrational modes. Our work introduces a new class of tunable non-equilibrium processes and offers a framework for designing and controlling soft robotic swarms and adaptive active materials while opening new possibilities for harnessing non-reciprocal interactions in engineered systems.
活性物质中出现的非互易性驱动超越平衡系统行为的自组织状态的形成。在这里,我们证明了由活海星胚胎组成的活性固体可以自发地在稳定的波动状态和稳定的振荡稳定状态之间过渡。在微观尺度上,非平衡稳态由两种不同的手性对称性破坏机制产生:单个胚胎的自旋导致宏观的奇弹性响应和它们的旋转轴的进动导致主动的回旋弹性。在振荡状态下,我们观察到可以通过机械扰动激发的长波光学振动模式。由于耦合振动模式,这些可激发的非互易固体在没有循环协议的情况下表现出非平衡功生成。我们的工作引入了一类新的可调非平衡过程,并为设计和控制软机器人群体和自适应活性材料提供了一个框架,同时为在工程系统中利用非互反相互作用开辟了新的可能性。
{"title":"Selective excitation of work-generating cycles in non-reciprocal living solids","authors":"Yu-Chen Chao, Shreyas Gokhale, Lisa Lin, Alasdair Hastewell, Alexandru Bacanu, Yuchao Chen, Junang Li, Jinghui Liu, Hyunseok Lee, Jörn Dunkel, Nikta Fakhri","doi":"10.1038/s41567-026-03178-7","DOIUrl":"https://doi.org/10.1038/s41567-026-03178-7","url":null,"abstract":"Emergent non-reciprocity in active matter drives the formation of self-organized states that transcend the behaviours of equilibrium systems. Here we show that active solids composed of living starfish embryos spontaneously transition between stable fluctuating and stable oscillatory steady states. The non-equilibrium steady states arise from two distinct chiral symmetry-breaking mechanisms at the microscopic scale: the spinning of individual embryos resulting in a macroscopic odd elastic response and the precession of their rotation axis leading to active gyroelasticity. In the oscillatory state, we observe long-wavelength optical vibrational modes that can be excited through mechanical perturbations. These excitable non-reciprocal solids exhibit non-equilibrium work generation without cycling protocols, due to coupled vibrational modes. Our work introduces a new class of tunable non-equilibrium processes and offers a framework for designing and controlling soft robotic swarms and adaptive active materials while opening new possibilities for harnessing non-reciprocal interactions in engineered systems.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"275 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146102081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigated chaos 减轻混乱
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-03 DOI: 10.1038/s41567-026-03173-y
Bruno Bertini
{"title":"Mitigated chaos","authors":"Bruno Bertini","doi":"10.1038/s41567-026-03173-y","DOIUrl":"https://doi.org/10.1038/s41567-026-03173-y","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"15 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards advanced polarized electron sources 先进的极化电子源
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-02 DOI: 10.1038/s41567-025-03138-7
Vladimir N. Litvinenko, Nikhil Bachhawat, Jean Clifford Brutus, Luca Cultrera, Kenneth Decker, Mengjia Gaowei, Patrick Inacker, Yichao Jing, Jun Ma, Kali Prasanna Mondal, Geetha Narayan, Igor Pinayev, Freddy Severino, Kai Shih, John Skaritka, Loralie Smart, Yatming Than, John Walsh, Erdong Wang, Gang Wang, Dan Weiss
Polarized electrons play an important role in high-energy and nuclear physics, and their properties have also been exploited in ultrafast electron microscopy. Currently, gallium arsenide crystals illuminated by circular polarized infrared laser light are commonly used for generating polarized electrons. However, the achievable accelerating voltage and the gradient of these electrostatic sources limit the beam quality and quantity. A solution could be to combine gallium arsenide photocathodes with radio-frequency electron guns, which are capable of accelerating beams with significantly higher gradients and voltage. Here we report the successful operation of a gallium arsenide photocathode in a superconducting radio-frequency gun. Our findings are relevant for future sources of polarized electrons.
极化电子在高能物理和核物理中起着重要的作用,其性质也在超快电子显微镜中得到了充分的利用。目前,砷化镓晶体被圆形偏振红外激光照射通常用于产生极化电子。然而,这些静电源可达到的加速电压和梯度限制了光束的质量和数量。一种解决方案可能是将砷化镓光电阴极与射频电子枪结合起来,后者能够以更高的梯度和电压加速光束。在这里,我们报告了砷化镓光电阴极在超导射频枪中的成功操作。我们的发现与未来极化电子的来源有关。
{"title":"Towards advanced polarized electron sources","authors":"Vladimir N. Litvinenko, Nikhil Bachhawat, Jean Clifford Brutus, Luca Cultrera, Kenneth Decker, Mengjia Gaowei, Patrick Inacker, Yichao Jing, Jun Ma, Kali Prasanna Mondal, Geetha Narayan, Igor Pinayev, Freddy Severino, Kai Shih, John Skaritka, Loralie Smart, Yatming Than, John Walsh, Erdong Wang, Gang Wang, Dan Weiss","doi":"10.1038/s41567-025-03138-7","DOIUrl":"https://doi.org/10.1038/s41567-025-03138-7","url":null,"abstract":"Polarized electrons play an important role in high-energy and nuclear physics, and their properties have also been exploited in ultrafast electron microscopy. Currently, gallium arsenide crystals illuminated by circular polarized infrared laser light are commonly used for generating polarized electrons. However, the achievable accelerating voltage and the gradient of these electrostatic sources limit the beam quality and quantity. A solution could be to combine gallium arsenide photocathodes with radio-frequency electron guns, which are capable of accelerating beams with significantly higher gradients and voltage. Here we report the successful operation of a gallium arsenide photocathode in a superconducting radio-frequency gun. Our findings are relevant for future sources of polarized electrons.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"1 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146102096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiofrequency gun for spin-polarized electron beams 用于自旋极化电子束的射频枪
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-02 DOI: 10.1038/s41567-025-03164-5
Masao Kuriki
{"title":"Radiofrequency gun for spin-polarized electron beams","authors":"Masao Kuriki","doi":"10.1038/s41567-025-03164-5","DOIUrl":"https://doi.org/10.1038/s41567-025-03164-5","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"31 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-propagating photonic topological interface states with hybridized pseudo-spins 杂化伪自旋的共传播光子拓扑界面态
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-02 DOI: 10.1038/s41567-026-03172-z
Xilin Feng, Tianwei Wu, Li Ge, Liang Feng
Topological interface states in quantum spin Hall systems, which are characterized by spin–momentum locking, enable robust unidirectional propagation for each spin component. Conventionally, such interfaces support only a single topological state in each propagation direction. This limitation impedes applications, such as those requiring multichannel signal switching. Here we demonstrate co-propagating topological interface states in a photonic topological insulator system. This is enabled by a hybridized pseudo-spin-flipping coupling mechanism that occurs across the interface between two topologically identical domains. The coupling mechanism facilitates power transfer and mode switching, which inherit the topological protection of the underlying states in each domain. The incorporation of optical gain further activates flexible switching, even in the presence of geometric defects. Our work introduces a strategy for multichannel topological photonics that could control light propagation in photonic integrated circuits.
量子自旋霍尔系统的拓扑界面态以自旋动量锁定为特征,使每个自旋分量都能实现鲁棒的单向传播。按照惯例,这种接口在每个传播方向上只支持一种拓扑状态。这种限制阻碍了应用,例如那些需要多通道信号交换的应用。在这里,我们展示了光子拓扑绝缘体系统中的共传播拓扑界面态。这是通过杂交伪自旋翻转耦合机制实现的,该机制发生在两个拓扑相同的域之间的界面上。该耦合机制有利于功率转移和模式切换,继承了各域底层状态的拓扑保护。即使在存在几何缺陷的情况下,光学增益的结合也进一步激活了灵活的开关。我们的工作介绍了一种多通道拓扑光子学策略,可以控制光子集成电路中的光传播。
{"title":"Co-propagating photonic topological interface states with hybridized pseudo-spins","authors":"Xilin Feng, Tianwei Wu, Li Ge, Liang Feng","doi":"10.1038/s41567-026-03172-z","DOIUrl":"https://doi.org/10.1038/s41567-026-03172-z","url":null,"abstract":"Topological interface states in quantum spin Hall systems, which are characterized by spin–momentum locking, enable robust unidirectional propagation for each spin component. Conventionally, such interfaces support only a single topological state in each propagation direction. This limitation impedes applications, such as those requiring multichannel signal switching. Here we demonstrate co-propagating topological interface states in a photonic topological insulator system. This is enabled by a hybridized pseudo-spin-flipping coupling mechanism that occurs across the interface between two topologically identical domains. The coupling mechanism facilitates power transfer and mode switching, which inherit the topological protection of the underlying states in each domain. The incorporation of optical gain further activates flexible switching, even in the presence of geometric defects. Our work introduces a strategy for multichannel topological photonics that could control light propagation in photonic integrated circuits.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"87 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146102082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of dissipationless fractional Chern insulator 无耗散分数阶陈氏绝缘子的观察
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-01-30 DOI: 10.1038/s41567-025-03167-2
Heonjoon Park, Weijie Li, Chaowei Hu, Christiano Beach, Miguel Gonçalves, Juan Felipe Mendez-Valderrama, Jonah Herzog-Arbeitman, Takashi Taniguchi, Kenji Watanabe, David Cobden, Liang Fu, B. Andrei Bernevig, Nicolas Regnault, Jiun-Haw Chu, Di Xiao, Xiaodong Xu
{"title":"Observation of dissipationless fractional Chern insulator","authors":"Heonjoon Park, Weijie Li, Chaowei Hu, Christiano Beach, Miguel Gonçalves, Juan Felipe Mendez-Valderrama, Jonah Herzog-Arbeitman, Takashi Taniguchi, Kenji Watanabe, David Cobden, Liang Fu, B. Andrei Bernevig, Nicolas Regnault, Jiun-Haw Chu, Di Xiao, Xiaodong Xu","doi":"10.1038/s41567-025-03167-2","DOIUrl":"https://doi.org/10.1038/s41567-025-03167-2","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"81 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146089266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lattice surgery realized on two distance-three repetition codes with superconducting qubits 利用超导量子比特实现两距离三重复码的点阵手术
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-01-30 DOI: 10.1038/s41567-025-03090-6
Ilya Besedin, Michael Kerschbaum, Jonathan Knoll, Ian Hesner, Lukas Bödeker, Luis Colmenarez, Luca Hofele, Nathan Lacroix, Christoph Hellings, François Swiadek, Alexander Flasby, Mohsen Bahrami Panah, Dante Colao Zanuz, Markus Müller, Andreas Wallraff
Quantum error correction is needed for quantum computers to be capable of executing algorithms using hundreds of logical qubits in a fault-tolerant manner. Recent experiments have progressed towards this by demonstrating sufficiently low error rates for state preservation of a single logical qubit. However, quantum computation algorithms also require that these logical qubits can be entangled and that gate operations can be performed on them. Lattice surgery is a technique that offers a practical approach for implementing such gates, particularly in planar quantum processor layouts. Here we demonstrate lattice surgery between two distance-three repetition-code qubits by splitting a single distance-three surface-code qubit. Using a quantum circuit that is fault-tolerant for bit-flip errors, we achieve an improvement in the value of the decoded Z Z logical two-qubit observable compared with a similar non-encoded circuit. We therefore demonstrate the functional building blocks needed for lattice-surgery operations on larger-distance codes based on superconducting circuits.
量子计算机要能够以容错方式执行使用数百个逻辑量子位的算法,就需要量子纠错。最近的实验在这方面取得了进展,证明了单个逻辑量子位的状态保存的错误率足够低。然而,量子计算算法也要求这些逻辑量子位可以纠缠,并且可以对它们进行门操作。晶格手术是一种为实现这种门提供实用方法的技术,特别是在平面量子处理器布局中。在这里,我们通过分裂单个距离-三个表面代码量子位来演示两个距离-三个重复代码量子位之间的晶格手术。使用对位翻转错误容错的量子电路,与类似的非编码电路相比,我们实现了解码zz逻辑双量子位观测值的改进。因此,我们展示了基于超导电路的更远距离编码的晶格手术操作所需的功能构建块。
{"title":"Lattice surgery realized on two distance-three repetition codes with superconducting qubits","authors":"Ilya Besedin, Michael Kerschbaum, Jonathan Knoll, Ian Hesner, Lukas Bödeker, Luis Colmenarez, Luca Hofele, Nathan Lacroix, Christoph Hellings, François Swiadek, Alexander Flasby, Mohsen Bahrami Panah, Dante Colao Zanuz, Markus Müller, Andreas Wallraff","doi":"10.1038/s41567-025-03090-6","DOIUrl":"https://doi.org/10.1038/s41567-025-03090-6","url":null,"abstract":"Quantum error correction is needed for quantum computers to be capable of executing algorithms using hundreds of logical qubits in a fault-tolerant manner. Recent experiments have progressed towards this by demonstrating sufficiently low error rates for state preservation of a single logical qubit. However, quantum computation algorithms also require that these logical qubits can be entangled and that gate operations can be performed on them. Lattice surgery is a technique that offers a practical approach for implementing such gates, particularly in planar quantum processor layouts. Here we demonstrate lattice surgery between two distance-three repetition-code qubits by splitting a single distance-three surface-code qubit. Using a quantum circuit that is fault-tolerant for bit-flip errors, we achieve an improvement in the value of the decoded <jats:italic>Z</jats:italic> <jats:italic>Z</jats:italic> logical two-qubit observable compared with a similar non-encoded circuit. We therefore demonstrate the functional building blocks needed for lattice-surgery operations on larger-distance codes based on superconducting circuits.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"30 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146089263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum computing isn’t just about scaling 量子计算不仅仅是缩放
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-01-30 DOI: 10.1038/s41567-025-03110-5
Murphy Yuezhen Niu
{"title":"Quantum computing isn’t just about scaling","authors":"Murphy Yuezhen Niu","doi":"10.1038/s41567-025-03110-5","DOIUrl":"https://doi.org/10.1038/s41567-025-03110-5","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"13 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146089262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1