首页 > 最新文献

Nature Physics最新文献

英文 中文
Super- and subradiant dynamics of quantum emitters mediated by atomic matter waves 原子物质波介导的量子发射器的超辐射和亚辐射动力学
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1038/s41567-024-02676-w
Youngshin Kim, Alfonso Lanuza, Dominik Schneble

The cooperative modification of spontaneous radiative decay exemplifies a many-emitter effect in quantum optics. So far, its experimental realizations have relied on interactions mediated by rapidly escaping photons, which do not play an active role in the emitter dynamics. Here we use a platform of ultracold atoms in a one-dimensional optical lattice geometry to explore cooperative non-Markovian dynamics of synthetic quantum emitters that decay by radiating slow atomic matter waves. By preparing and manipulating arrays of emitters hosting weakly and strongly interacting many-body phases of excitations, we demonstrate directional collective emission and study the interplay between retardation and super- and subradiant dynamics. Moreover, we directly observe the spontaneous buildup of coherence among emitters. Our results on collective radiative dynamics establish ultracold matter waves as a versatile tool for studying many-body quantum optics in spatially extended and ordered systems.

自发辐射衰变的合作修正是量子光学中多发射极效应的典范。迄今为止,其实验实现依赖于由快速逃逸光子介导的相互作用,而这些光子在发射器动力学中并不发挥积极作用。在这里,我们利用一维光学晶格几何中的超冷原子平台,探索通过辐射缓慢原子物质波衰变的合成量子发射器的合作非马尔可夫动力学。通过制备和操纵承载弱和强相互作用多体激发相的发射体阵列,我们展示了定向集体发射,并研究了迟滞与超辐射和亚辐射动力学之间的相互作用。此外,我们还直接观察到发射体之间自发建立的相干性。我们在集体辐射动力学方面的研究成果确立了超冷物质波作为研究空间扩展和有序系统中多体量子光学的多功能工具的地位。
{"title":"Super- and subradiant dynamics of quantum emitters mediated by atomic matter waves","authors":"Youngshin Kim, Alfonso Lanuza, Dominik Schneble","doi":"10.1038/s41567-024-02676-w","DOIUrl":"https://doi.org/10.1038/s41567-024-02676-w","url":null,"abstract":"<p>The cooperative modification of spontaneous radiative decay exemplifies a many-emitter effect in quantum optics. So far, its experimental realizations have relied on interactions mediated by rapidly escaping photons, which do not play an active role in the emitter dynamics. Here we use a platform of ultracold atoms in a one-dimensional optical lattice geometry to explore cooperative non-Markovian dynamics of synthetic quantum emitters that decay by radiating slow atomic matter waves. By preparing and manipulating arrays of emitters hosting weakly and strongly interacting many-body phases of excitations, we demonstrate directional collective emission and study the interplay between retardation and super- and subradiant dynamics. Moreover, we directly observe the spontaneous buildup of coherence among emitters. Our results on collective radiative dynamics establish ultracold matter waves as a versatile tool for studying many-body quantum optics in spatially extended and ordered systems.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"8 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Hermitian topological phase transitions controlled by nonlinearity 由非线性控制的非赫米拓扑相变
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-10-23 DOI: 10.1038/s41567-023-02244-8
Tianxiang Dai, Yutian Ao, Jun Mao, Yan Yang, Yun Zheng, Chonghao Zhai, Yandong Li, Jingze Yuan, Bo Tang, Zhihua Li, Jun Luo, Wenwu Wang, Xiaoyong Hu, Qihuang Gong, Jianwei Wang
Manipulating topological invariants is possible by modifying the global properties of optical devices to alter their band structures. This could be achieved by statically altering devices or dynamically reconfiguring devices with considerably different geometric parameters, even though it inhibits switching speed. Recently, optical nonlinearity has emerged as a tool for tailoring topological and non-Hermitian (NH) properties, promising fast manipulation of topological phases. In this work, we observe topologically protected NH phase transitions driven by optical nonlinearity in a silicon nanophotonic Floquet topological insulator. The phase transition occurs from forbidden bandgaps to NH conducting edge modes, which emerge at a nonlinearity-induced gain–loss junction along the boundaries of a topological insulator. We find static NH edge modes and dynamic phase transitions involving exceptional points at a speed of hundreds of picoseconds, which inherently retain topological protections against fabrication imperfections. This work shows an interplay between topology and non-Hermiticity by means of nonlinear optics, and it provides a way of manipulating multiple phase transitions at high speeds that is applicable to many other materials with strong nonlinearities, which could promote the development of unconventionally robust light-controlled devices for classical and quantum applications. The phase transition from a topologically trivial state to non-Hermitian conducting edge modes can be controlled by optical nonlinearities, achieving picosecond switching speeds.
通过修改光学设备的全局属性来改变其带状结构,就有可能操纵拓扑不变性。这可以通过静态改变器件或动态重新配置几何参数差异较大的器件来实现,尽管这会抑制开关速度。最近,光学非线性已成为一种定制拓扑和非赫米提(NH)特性的工具,有望快速操纵拓扑相位。在这项工作中,我们在硅纳米光子 Floquet 拓扑绝缘体中观察到了由光非线性驱动的拓扑保护 NH 相变。相变发生在从禁带隙到 NH 传导边缘模式之间,这种相变出现在拓扑绝缘体边界的非线性诱导增益-损耗交界处。我们发现了静态 NH 边缘模式和涉及例外点的动态相变,其速度可达数百皮秒,本质上保留了拓扑保护功能,防止制造缺陷。这项工作通过非线性光学手段展示了拓扑和非恒定性之间的相互作用,并提供了一种高速操纵多重相变的方法,这种方法适用于许多其他具有强非线性的材料,可促进开发用于经典和量子应用的非传统稳健光控设备。从拓扑琐碎态到非赫米提传导边缘模式的相变可由光非线性控制,实现皮秒级的切换速度。
{"title":"Non-Hermitian topological phase transitions controlled by nonlinearity","authors":"Tianxiang Dai,&nbsp;Yutian Ao,&nbsp;Jun Mao,&nbsp;Yan Yang,&nbsp;Yun Zheng,&nbsp;Chonghao Zhai,&nbsp;Yandong Li,&nbsp;Jingze Yuan,&nbsp;Bo Tang,&nbsp;Zhihua Li,&nbsp;Jun Luo,&nbsp;Wenwu Wang,&nbsp;Xiaoyong Hu,&nbsp;Qihuang Gong,&nbsp;Jianwei Wang","doi":"10.1038/s41567-023-02244-8","DOIUrl":"10.1038/s41567-023-02244-8","url":null,"abstract":"Manipulating topological invariants is possible by modifying the global properties of optical devices to alter their band structures. This could be achieved by statically altering devices or dynamically reconfiguring devices with considerably different geometric parameters, even though it inhibits switching speed. Recently, optical nonlinearity has emerged as a tool for tailoring topological and non-Hermitian (NH) properties, promising fast manipulation of topological phases. In this work, we observe topologically protected NH phase transitions driven by optical nonlinearity in a silicon nanophotonic Floquet topological insulator. The phase transition occurs from forbidden bandgaps to NH conducting edge modes, which emerge at a nonlinearity-induced gain–loss junction along the boundaries of a topological insulator. We find static NH edge modes and dynamic phase transitions involving exceptional points at a speed of hundreds of picoseconds, which inherently retain topological protections against fabrication imperfections. This work shows an interplay between topology and non-Hermiticity by means of nonlinear optics, and it provides a way of manipulating multiple phase transitions at high speeds that is applicable to many other materials with strong nonlinearities, which could promote the development of unconventionally robust light-controlled devices for classical and quantum applications. The phase transition from a topologically trivial state to non-Hermitian conducting edge modes can be controlled by optical nonlinearities, achieving picosecond switching speeds.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 1","pages":"101-108"},"PeriodicalIF":19.6,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological phase transitions have never been faster 拓扑相变从未如此迅速
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-10-23 DOI: 10.1038/s41567-023-02211-3
Jiangbin Gong, Ching Hua Lee
A nonlinear optical approach has now enabled picosecond control of a complex band structure, driving a non-Hermitian topological phase transition across an exceptional-point singularity.
现在,一种非线性光学方法实现了对复杂带状结构的皮秒级控制,推动了跨越例外点奇点的非赫米提拓扑相变。
{"title":"Topological phase transitions have never been faster","authors":"Jiangbin Gong,&nbsp;Ching Hua Lee","doi":"10.1038/s41567-023-02211-3","DOIUrl":"10.1038/s41567-023-02211-3","url":null,"abstract":"A nonlinear optical approach has now enabled picosecond control of a complex band structure, driving a non-Hermitian topological phase transition across an exceptional-point singularity.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 1","pages":"12-13"},"PeriodicalIF":19.6,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotation rearranges electrons 旋转使电子重新排列
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-10-19 DOI: 10.1038/s41567-023-02237-7
Bahadur Singh
Understanding lattice-geometry-driven electronic structure and orbital character in a titanium-based superconducting kagome metal provides insights into the non-trivial topology and electronic nematicity of correlated quantum matter.
了解钛基超导卡戈米金属中晶格几何驱动的电子结构和轨道特性,有助于深入了解相关量子物质的非微观拓扑结构和电子中性。
{"title":"Rotation rearranges electrons","authors":"Bahadur Singh","doi":"10.1038/s41567-023-02237-7","DOIUrl":"10.1038/s41567-023-02237-7","url":null,"abstract":"Understanding lattice-geometry-driven electronic structure and orbital character in a titanium-based superconducting kagome metal provides insights into the non-trivial topology and electronic nematicity of correlated quantum matter.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 12","pages":"1757-1758"},"PeriodicalIF":19.6,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantum simulation gets openly critical 量子模拟公开批评
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-10-18 DOI: 10.1038/s41567-023-02245-7
Hendrik Weimer
The simulation of open quantum many-body systems is one of the hardest tasks in computational physics. Now, quantum computers are close to answering crucial questions for such systems in a regime that classical computers cannot reach.
模拟开放量子多体系统是计算物理学中最难的任务之一。现在,量子计算机已经接近于回答这类系统的关键问题,而这是经典计算机所无法达到的。
{"title":"Quantum simulation gets openly critical","authors":"Hendrik Weimer","doi":"10.1038/s41567-023-02245-7","DOIUrl":"10.1038/s41567-023-02245-7","url":null,"abstract":"The simulation of open quantum many-body systems is one of the hardest tasks in computational physics. Now, quantum computers are close to answering crucial questions for such systems in a regime that classical computers cannot reach.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 12","pages":"1753-1754"},"PeriodicalIF":19.6,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purification-based quantum error mitigation of pair-correlated electron simulations 基于净化的电子对相关模拟量子误差缓解技术
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-10-12 DOI: 10.1038/s41567-023-02240-y
T. E. O’Brien, G. Anselmetti, F. Gkritsis, V. E. Elfving, S. Polla, W. J. Huggins, O. Oumarou, K. Kechedzhi, D. Abanin, R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, K. Anderson, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, J. C. Bardin, A. Bengtsson, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, J. Campero, Z. Chen, B. Chiaro, D. Chik, J. Cogan, R. Collins, P. Conner, W. Courtney, A. L. Crook, B. Curtin, D. M. Debroy, S. Demura, I. Drozdov, A. Dunsworth, C. Erickson, L. Faoro, E. Farhi, R. Fatemi, V. S. Ferreira, L. Flores Burgos, E. Forati, A. G. Fowler, B. Foxen, W. Giang, C. Gidney, D. Gilboa, M. Giustina, R. Gosula, A. Grajales Dau, J. A. Gross, S. Habegger, M. C. Hamilton, M. Hansen, M. P. Harrigan, S. D. Harrington, P. Heu, M. R. Hoffmann, S. Hong, T. Huang, A. Huff, L. B. Ioffe, S. V. Isakov, J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, T. Khattar, M. Khezri, M. Kieferová, S. Kim, P. V. Klimov, A. R. Klots, A. N. Korotkov, F. Kostritsa, J. M. Kreikebaum, D. Landhuis, P. Laptev, K.-M. Lau, L. Laws, J. Lee, K. Lee, B. J. Lester, A. T. Lill, W. Liu, W. P. Livingston, A. Locharla, F. D. Malone, S. Mandrà, O. Martin, S. Martin, J. R. McClean, T. McCourt, M. McEwen, X. Mi, A. Mieszala, K. C. Miao, M. Mohseni, S. Montazeri, A. Morvan, R. Movassagh, W. Mruczkiewicz, O. Naaman, M. Neeley, C. Neill, A. Nersisyan, M. Newman, J. H. Ng, A. Nguyen, M. Nguyen, M. Y. Niu, S. Omonije, A. Opremcak, A. Petukhov, R. Potter, L. P. Pryadko, C. Quintana, C. Rocque, P. Roushan, N. Saei, D. Sank, K. Sankaragomathi, K. J. Satzinger, H. F. Schurkus, C. Schuster, M. J. Shearn, A. Shorter, N. Shutty, V. Shvarts, J. Skruzny, W. C. Smith, R. D. Somma, G. Sterling, D. Strain, M. Szalay, D. Thor, A. Torres, G. Vidal, B. Villalonga, C. Vollgraff Heidweiller, T. White, B. W. K. Woo, C. Xing, Z. J. Yao, P. Yeh, J. Yoo, G. Young, A. Zalcman, Y. Zhang, N. Zhu, N. Zobrist, D. Bacon, S. Boixo, Y. Chen, J. Hilton, J. Kelly, E. Lucero, A. Megrant, H. Neven, V. Smelyanskiy, C. Gogolin, R. Babbush, N. C. Rubin
An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Before fault-tolerant quantum computing, robust error-mitigation strategies were necessary to continue this growth. Here, we validate recently introduced error-mitigation strategies that exploit the expectation that the ideal output of a quantum algorithm would be a pure state. We consider the task of simulating electron systems in the seniority-zero subspace where all electrons are paired with their opposite spin. This affords a computational stepping stone to a fully correlated model. We compare the performance of error mitigations on the basis of doubling quantum resources in time or in space on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques such as postselection. We study how the gain from error mitigation scales with the system size and observe a polynomial suppression of error with increased resources. Extrapolation of our results indicates that substantial hardware improvements will be required for classically intractable variational chemistry simulations. It is hoped that simulations of molecules and materials will provide a near-term application of quantum computers. A study of the performance of error mitigation highlights the obstacles to scaling up these calculations to practically useful sizes.
量子计算平台发展的一个重要衡量标准是对日益复杂的物理系统进行仿真。在容错量子计算之前,稳健的错误缓解策略是继续发展的必要条件。在这里,我们验证了最近推出的误差缓解策略,这些策略利用了量子算法的理想输出是纯态这一预期。我们考虑的任务是模拟资深-零子空间中的电子系统,在这个子空间中,所有电子都与其相反的自旋配对。这提供了通向全相关模型的计算阶梯。我们在一个超导量子比特量子处理器的多达 20 个量子比特上,比较了在时间或空间上加倍量子资源的基础上减少误差的性能。我们观察到,与后选等不太复杂的技术相比,误差减少了一到两个数量级。我们研究了减少误差的收益如何随着系统规模的扩大而缩放,并观察到误差随着资源的增加而呈多项式抑制。对我们的结果进行推断表明,对于经典的难以解决的变分化学模拟来说,需要对硬件进行大幅改进。我们希望,分子和材料模拟将成为量子计算机的近期应用。对误差缓解性能的研究凸显了将这些计算扩展到实际有用规模所面临的障碍。
{"title":"Purification-based quantum error mitigation of pair-correlated electron simulations","authors":"T. E. O’Brien,&nbsp;G. Anselmetti,&nbsp;F. Gkritsis,&nbsp;V. E. Elfving,&nbsp;S. Polla,&nbsp;W. J. Huggins,&nbsp;O. Oumarou,&nbsp;K. Kechedzhi,&nbsp;D. Abanin,&nbsp;R. Acharya,&nbsp;I. Aleiner,&nbsp;R. Allen,&nbsp;T. I. Andersen,&nbsp;K. Anderson,&nbsp;M. Ansmann,&nbsp;F. Arute,&nbsp;K. Arya,&nbsp;A. Asfaw,&nbsp;J. Atalaya,&nbsp;J. C. Bardin,&nbsp;A. Bengtsson,&nbsp;G. Bortoli,&nbsp;A. Bourassa,&nbsp;J. Bovaird,&nbsp;L. Brill,&nbsp;M. Broughton,&nbsp;B. Buckley,&nbsp;D. A. Buell,&nbsp;T. Burger,&nbsp;B. Burkett,&nbsp;N. Bushnell,&nbsp;J. Campero,&nbsp;Z. Chen,&nbsp;B. Chiaro,&nbsp;D. Chik,&nbsp;J. Cogan,&nbsp;R. Collins,&nbsp;P. Conner,&nbsp;W. Courtney,&nbsp;A. L. Crook,&nbsp;B. Curtin,&nbsp;D. M. Debroy,&nbsp;S. Demura,&nbsp;I. Drozdov,&nbsp;A. Dunsworth,&nbsp;C. Erickson,&nbsp;L. Faoro,&nbsp;E. Farhi,&nbsp;R. Fatemi,&nbsp;V. S. Ferreira,&nbsp;L. Flores Burgos,&nbsp;E. Forati,&nbsp;A. G. Fowler,&nbsp;B. Foxen,&nbsp;W. Giang,&nbsp;C. Gidney,&nbsp;D. Gilboa,&nbsp;M. Giustina,&nbsp;R. Gosula,&nbsp;A. Grajales Dau,&nbsp;J. A. Gross,&nbsp;S. Habegger,&nbsp;M. C. Hamilton,&nbsp;M. Hansen,&nbsp;M. P. Harrigan,&nbsp;S. D. Harrington,&nbsp;P. Heu,&nbsp;M. R. Hoffmann,&nbsp;S. Hong,&nbsp;T. Huang,&nbsp;A. Huff,&nbsp;L. B. Ioffe,&nbsp;S. V. Isakov,&nbsp;J. Iveland,&nbsp;E. Jeffrey,&nbsp;Z. Jiang,&nbsp;C. Jones,&nbsp;P. Juhas,&nbsp;D. Kafri,&nbsp;T. Khattar,&nbsp;M. Khezri,&nbsp;M. Kieferová,&nbsp;S. Kim,&nbsp;P. V. Klimov,&nbsp;A. R. Klots,&nbsp;A. N. Korotkov,&nbsp;F. Kostritsa,&nbsp;J. M. Kreikebaum,&nbsp;D. Landhuis,&nbsp;P. Laptev,&nbsp;K.-M. Lau,&nbsp;L. Laws,&nbsp;J. Lee,&nbsp;K. Lee,&nbsp;B. J. Lester,&nbsp;A. T. Lill,&nbsp;W. Liu,&nbsp;W. P. Livingston,&nbsp;A. Locharla,&nbsp;F. D. Malone,&nbsp;S. Mandrà,&nbsp;O. Martin,&nbsp;S. Martin,&nbsp;J. R. McClean,&nbsp;T. McCourt,&nbsp;M. McEwen,&nbsp;X. Mi,&nbsp;A. Mieszala,&nbsp;K. C. Miao,&nbsp;M. Mohseni,&nbsp;S. Montazeri,&nbsp;A. Morvan,&nbsp;R. Movassagh,&nbsp;W. Mruczkiewicz,&nbsp;O. Naaman,&nbsp;M. Neeley,&nbsp;C. Neill,&nbsp;A. Nersisyan,&nbsp;M. Newman,&nbsp;J. H. Ng,&nbsp;A. Nguyen,&nbsp;M. Nguyen,&nbsp;M. Y. Niu,&nbsp;S. Omonije,&nbsp;A. Opremcak,&nbsp;A. Petukhov,&nbsp;R. Potter,&nbsp;L. P. Pryadko,&nbsp;C. Quintana,&nbsp;C. Rocque,&nbsp;P. Roushan,&nbsp;N. Saei,&nbsp;D. Sank,&nbsp;K. Sankaragomathi,&nbsp;K. J. Satzinger,&nbsp;H. F. Schurkus,&nbsp;C. Schuster,&nbsp;M. J. Shearn,&nbsp;A. Shorter,&nbsp;N. Shutty,&nbsp;V. Shvarts,&nbsp;J. Skruzny,&nbsp;W. C. Smith,&nbsp;R. D. Somma,&nbsp;G. Sterling,&nbsp;D. Strain,&nbsp;M. Szalay,&nbsp;D. Thor,&nbsp;A. Torres,&nbsp;G. Vidal,&nbsp;B. Villalonga,&nbsp;C. Vollgraff Heidweiller,&nbsp;T. White,&nbsp;B. W. K. Woo,&nbsp;C. Xing,&nbsp;Z. J. Yao,&nbsp;P. Yeh,&nbsp;J. Yoo,&nbsp;G. Young,&nbsp;A. Zalcman,&nbsp;Y. Zhang,&nbsp;N. Zhu,&nbsp;N. Zobrist,&nbsp;D. Bacon,&nbsp;S. Boixo,&nbsp;Y. Chen,&nbsp;J. Hilton,&nbsp;J. Kelly,&nbsp;E. Lucero,&nbsp;A. Megrant,&nbsp;H. Neven,&nbsp;V. Smelyanskiy,&nbsp;C. Gogolin,&nbsp;R. Babbush,&nbsp;N. C. Rubin","doi":"10.1038/s41567-023-02240-y","DOIUrl":"10.1038/s41567-023-02240-y","url":null,"abstract":"An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Before fault-tolerant quantum computing, robust error-mitigation strategies were necessary to continue this growth. Here, we validate recently introduced error-mitigation strategies that exploit the expectation that the ideal output of a quantum algorithm would be a pure state. We consider the task of simulating electron systems in the seniority-zero subspace where all electrons are paired with their opposite spin. This affords a computational stepping stone to a fully correlated model. We compare the performance of error mitigations on the basis of doubling quantum resources in time or in space on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques such as postselection. We study how the gain from error mitigation scales with the system size and observe a polynomial suppression of error with increased resources. Extrapolation of our results indicates that substantial hardware improvements will be required for classically intractable variational chemistry simulations. It is hoped that simulations of molecules and materials will provide a near-term application of quantum computers. A study of the performance of error mitigation highlights the obstacles to scaling up these calculations to practically useful sizes.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 12","pages":"1787-1792"},"PeriodicalIF":19.6,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-023-02240-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-affine atomic rearrangement of glasses through stress-induced structural anisotropy 通过应力诱导的结构各向异性实现玻璃的非等轴原子重排
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-10-12 DOI: 10.1038/s41567-023-02243-9
Jie Dong, Hailong Peng, Hui Wang, Yang Tong, Yutian Wang, Wojciech Dmowski, Takeshi Egami, Baoan Sun, Weihua Wang, Haiyang Bai
The atomic-scale structural rearrangement of glasses on applied stress is central to the understanding of their macroscopic mechanical properties and behaviour. However, experimentally resolving the atomic-scale structural changes of a deformed glass remains challenging due to the disordered nature of the glass structure. Conventional structural analyses such as X-ray diffraction are based on the assumption of structural isotropy and hence cannot discern the subtle atomic-scale structural rearrangement induced by deformation. Here we show that structural anisotropy correlates with non-affine atomic displacements—meaning those that do not preserve parallel lines in the atomic structure—in various types of glass. This serves as an approach for identifying the atomic-scale non-affine deformation in glasses. We also uncover the atomic-level mechanism responsible for plastic flow, which differs between metallic glasses and covalent glasses. The non-affine structural rearrangements in metallic glasses are mediated through the stretching or contraction of atomic bonds. The non-affinity of covalent glasses that occurs in a less localized manner is mediated through the rotation of atomic bonds or chains without changing the bond length. These findings provide key ingredients for exploring the atomic-scale process governing the macroscopic deformation of amorphous solids. Resolving the structural changes of a deformed glass on the atomic scale is challenging due to its disordered nature. Now, high-energy diffraction measurements show that non-line-preserving atomic displacements in glasses correlate with structural anisotropy.
玻璃在外加应力作用下的原子尺度结构重排是了解其宏观机械特性和行为的核心。然而,由于玻璃结构的无序性,在实验中解析变形玻璃的原子尺度结构变化仍然具有挑战性。传统的结构分析(如 X 射线衍射)基于结构各向同性的假设,因此无法分辨变形引起的微妙的原子尺度结构重排。在这里,我们展示了结构各向异性与非正交原子位移(即原子结构中不保留平行线的位移)在各类玻璃中的相关性。这为识别玻璃中原子尺度的非正交变形提供了一种方法。我们还揭示了金属玻璃和共价玻璃塑性流动的原子级机制。金属玻璃中的非亲和性结构重排是通过原子键的拉伸或收缩实现的。共价玻璃的非亲和性以较小的局部方式发生,是通过原子键或原子链的旋转而不改变键的长度来介导的。这些发现为探索无定形固体宏观变形的原子尺度过程提供了关键要素。由于玻璃的无序性,在原子尺度上解析变形玻璃的结构变化具有挑战性。现在,高能衍射测量结果表明,玻璃中非线性原子位移与结构各向异性相关。
{"title":"Non-affine atomic rearrangement of glasses through stress-induced structural anisotropy","authors":"Jie Dong,&nbsp;Hailong Peng,&nbsp;Hui Wang,&nbsp;Yang Tong,&nbsp;Yutian Wang,&nbsp;Wojciech Dmowski,&nbsp;Takeshi Egami,&nbsp;Baoan Sun,&nbsp;Weihua Wang,&nbsp;Haiyang Bai","doi":"10.1038/s41567-023-02243-9","DOIUrl":"10.1038/s41567-023-02243-9","url":null,"abstract":"The atomic-scale structural rearrangement of glasses on applied stress is central to the understanding of their macroscopic mechanical properties and behaviour. However, experimentally resolving the atomic-scale structural changes of a deformed glass remains challenging due to the disordered nature of the glass structure. Conventional structural analyses such as X-ray diffraction are based on the assumption of structural isotropy and hence cannot discern the subtle atomic-scale structural rearrangement induced by deformation. Here we show that structural anisotropy correlates with non-affine atomic displacements—meaning those that do not preserve parallel lines in the atomic structure—in various types of glass. This serves as an approach for identifying the atomic-scale non-affine deformation in glasses. We also uncover the atomic-level mechanism responsible for plastic flow, which differs between metallic glasses and covalent glasses. The non-affine structural rearrangements in metallic glasses are mediated through the stretching or contraction of atomic bonds. The non-affinity of covalent glasses that occurs in a less localized manner is mediated through the rotation of atomic bonds or chains without changing the bond length. These findings provide key ingredients for exploring the atomic-scale process governing the macroscopic deformation of amorphous solids. Resolving the structural changes of a deformed glass on the atomic scale is challenging due to its disordered nature. Now, high-energy diffraction measurements show that non-line-preserving atomic displacements in glasses correlate with structural anisotropy.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 12","pages":"1896-1903"},"PeriodicalIF":19.6,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altered learning 改变学习
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-10-11 DOI: 10.1038/s41567-023-02257-3
David Abergel
{"title":"Altered learning","authors":"David Abergel","doi":"10.1038/s41567-023-02257-3","DOIUrl":"10.1038/s41567-023-02257-3","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 10","pages":"1386-1386"},"PeriodicalIF":19.6,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A difference of consequence 后果的不同
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-10-11 DOI: 10.1038/s41567-023-02228-8
Andrea Merlone, Chiara Musacchio, Walter Bich
Metrology and meteorology: just two letters separating two similar and frequently confused words. Andrea Merlone, Chiara Musacchio and Walter Bich tell us about these different disciplines and ways in which they collaborate.
计量学和气象学:仅两个字母就将两个相似但经常混淆的词分开。Andrea Merlone、Chiara Musacchio 和 Walter Bich 向我们介绍了这两个不同的学科及其合作方式。
{"title":"A difference of consequence","authors":"Andrea Merlone,&nbsp;Chiara Musacchio,&nbsp;Walter Bich","doi":"10.1038/s41567-023-02228-8","DOIUrl":"10.1038/s41567-023-02228-8","url":null,"abstract":"Metrology and meteorology: just two letters separating two similar and frequently confused words. Andrea Merlone, Chiara Musacchio and Walter Bich tell us about these different disciplines and ways in which they collaborate.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 10","pages":"1518-1518"},"PeriodicalIF":19.6,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soft matter in the loop 循环中的软物质
IF 19.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2023-10-09 DOI: 10.1038/s41567-023-02227-9
Nick Oikonomeas-Koppasis, Peter Schall
Currently, a general framework explaining the fundamental dynamic transitions from solid to fluid of mechanically probed soft materials is lacking. Now, a unifying van der Waals-like model is proposed that describes the dynamic solid–liquid transition in the rheology of these materials.
目前,还缺乏一个总体框架来解释机械探测软材料从固体到流体的基本动态转变。现在,我们提出了一个统一的范德华样模型来描述这些材料流变学中的动态固液转变。
{"title":"Soft matter in the loop","authors":"Nick Oikonomeas-Koppasis,&nbsp;Peter Schall","doi":"10.1038/s41567-023-02227-9","DOIUrl":"10.1038/s41567-023-02227-9","url":null,"abstract":"Currently, a general framework explaining the fundamental dynamic transitions from solid to fluid of mechanically probed soft materials is lacking. Now, a unifying van der Waals-like model is proposed that describes the dynamic solid–liquid transition in the rheology of these materials.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"19 11","pages":"1554-1555"},"PeriodicalIF":19.6,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50165834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1