Eli C. Zuercher, Andrew Thomas Poore, Devendra Prajapat, Joseph M. Palazzo, Alana Thomas, Caitlin N. Birthright, Jack J. Lawrence, Ming Chen, Shiliang Tian
{"title":"Secondary Sphere Interactions Modulate Peroxynitrite Scavenging by the E2 Domain of Amyloid Precursor Protein","authors":"Eli C. Zuercher, Andrew Thomas Poore, Devendra Prajapat, Joseph M. Palazzo, Alana Thomas, Caitlin N. Birthright, Jack J. Lawrence, Ming Chen, Shiliang Tian","doi":"10.1039/d4dt02552k","DOIUrl":null,"url":null,"abstract":"Peroxynitrite (ONOO-) is a highly reactive nitrogen species that can cause significant damage to proteins, lipids, and DNA. Various enzymes, including metalloenzymes, play crucial roles in reducing ONOO- concentrations to protect cellular components. While the interaction of ONOO- with heme proteins is well-known, the reduction by Cu-containing proteins is less studied. The amyloid precursor protein (APP), implicated in Alzheimer's disease, has an E2 domain that binds copper ions with a dissociation constant of KD ~ 10<small><sup>-12</sup></small> M and is proposed to be involved in iron homeostasis, copper trafficking, and oxidative stress response. Our recent studies using EXAFS, UV-Vis, and EPR spectroscopy revealed a previously unidentified labile water ligand in the Cu(II) site of the E2 domain, suggesting reactivity with anionic substrates like ONOO-. Experimental data showed that Cu(I)-E2 reduces ONOO- at a significant rate (1.1 x 10<small><sup>5</sup></small> M-1s-1), comparable to native peroxynitrite scavengers, while maintaining active site integrity through multiple redox cycles. This study further investigates the mechanism of ONOO- reduction by Cu(I)-E2 using the Griess assay, demonstrating that reduction occurs via single electron transfer, forming nitrite and nitrate. This process aligns with previous findings that Cu(I)-E2 is oxidized to Cu(II)-E2 upon ONOO- reduction. Mutations at Lys435, affecting secondary sphere interactions, revealed that factors beyond electrostatics are involved in substrate recruitment. MD simulations suggest that steric hindrance from a newly formed hydrogen bond also plays a role. Understanding ONOO- reduction by the E2 domain of APP expands our knowledge of copper proteins in mitigating oxidative stress and elucidates their physiological and pathological roles, particularly in Alzheimer's disease.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"13 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt02552k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Peroxynitrite (ONOO-) is a highly reactive nitrogen species that can cause significant damage to proteins, lipids, and DNA. Various enzymes, including metalloenzymes, play crucial roles in reducing ONOO- concentrations to protect cellular components. While the interaction of ONOO- with heme proteins is well-known, the reduction by Cu-containing proteins is less studied. The amyloid precursor protein (APP), implicated in Alzheimer's disease, has an E2 domain that binds copper ions with a dissociation constant of KD ~ 10-12 M and is proposed to be involved in iron homeostasis, copper trafficking, and oxidative stress response. Our recent studies using EXAFS, UV-Vis, and EPR spectroscopy revealed a previously unidentified labile water ligand in the Cu(II) site of the E2 domain, suggesting reactivity with anionic substrates like ONOO-. Experimental data showed that Cu(I)-E2 reduces ONOO- at a significant rate (1.1 x 105 M-1s-1), comparable to native peroxynitrite scavengers, while maintaining active site integrity through multiple redox cycles. This study further investigates the mechanism of ONOO- reduction by Cu(I)-E2 using the Griess assay, demonstrating that reduction occurs via single electron transfer, forming nitrite and nitrate. This process aligns with previous findings that Cu(I)-E2 is oxidized to Cu(II)-E2 upon ONOO- reduction. Mutations at Lys435, affecting secondary sphere interactions, revealed that factors beyond electrostatics are involved in substrate recruitment. MD simulations suggest that steric hindrance from a newly formed hydrogen bond also plays a role. Understanding ONOO- reduction by the E2 domain of APP expands our knowledge of copper proteins in mitigating oxidative stress and elucidates their physiological and pathological roles, particularly in Alzheimer's disease.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.