Wireless Power Transmission Efficiency Improved by Conformal Phase Gradient Metasurface for Implanted Devices

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-03-27 DOI:10.1109/JERM.2024.3401582
Guoliang Ren;Mengjun Wang;Hongxing Zheng;Erping Li
{"title":"Wireless Power Transmission Efficiency Improved by Conformal Phase Gradient Metasurface for Implanted Devices","authors":"Guoliang Ren;Mengjun Wang;Hongxing Zheng;Erping Li","doi":"10.1109/JERM.2024.3401582","DOIUrl":null,"url":null,"abstract":"To enhance the efficiency of wireless power transmission for the implanted medical system, a human body surface conformal phase gradient metasurface (PGMS) has been designed in this letter. Based on geometric phase modulation, the PGMS can convert the spherical wave from the transmitting antenna into a plane wave, ensuring the electromagnetic wave perpendicular to human skin. Thereby the power transmission efficiency of the implanted system can be increased obviously. A three-layered cylindrical human tissue model, including skin, fat, and muscle layers, is used to analyze the performance of the PGMS. Simulation results show that the transmission coefficient amplitude of the metasurface element at 1.4 GHz exceeds 0.8. Then the spherical wave of the antenna converted into a plane wave is verified by a 3 × 3 PGMS array when the transmitting antenna is located 50 mm away. Finally, the measurement results have been obtained, which exhibit very good agreement with the simulation. The distinctive advantage of the designed PGMS lies in its flexibility, allowing it to be easily bent and conform to the contoured surfaces of the human body. Additionally, the PGMS offers seamless integration into various medical devices and implants, further enhancing its practicality. This research showcases the potential of the proposed PGMS in significantly enhancing wireless power transmission efficiency for implanted medical systems.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"325-331"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10539090/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the efficiency of wireless power transmission for the implanted medical system, a human body surface conformal phase gradient metasurface (PGMS) has been designed in this letter. Based on geometric phase modulation, the PGMS can convert the spherical wave from the transmitting antenna into a plane wave, ensuring the electromagnetic wave perpendicular to human skin. Thereby the power transmission efficiency of the implanted system can be increased obviously. A three-layered cylindrical human tissue model, including skin, fat, and muscle layers, is used to analyze the performance of the PGMS. Simulation results show that the transmission coefficient amplitude of the metasurface element at 1.4 GHz exceeds 0.8. Then the spherical wave of the antenna converted into a plane wave is verified by a 3 × 3 PGMS array when the transmitting antenna is located 50 mm away. Finally, the measurement results have been obtained, which exhibit very good agreement with the simulation. The distinctive advantage of the designed PGMS lies in its flexibility, allowing it to be easily bent and conform to the contoured surfaces of the human body. Additionally, the PGMS offers seamless integration into various medical devices and implants, further enhancing its practicality. This research showcases the potential of the proposed PGMS in significantly enhancing wireless power transmission efficiency for implanted medical systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用共形相位梯度超表面提高植入式设备无线电力传输效率
为了提高植入式医疗系统无线电力传输的效率,本文设计了一种人体表面共形相位梯度超表面(PGMS)。基于几何相位调制,PGMS可以将发射天线发出的球面波转换成平面波,保证电磁波垂直于人体皮肤。从而可以明显提高植入系统的功率传输效率。一个三层的圆柱形人体组织模型,包括皮肤、脂肪和肌肉层,被用来分析PGMS的性能。仿真结果表明,超表面元件在1.4 GHz时的透射系数幅值超过0.8。然后在发射天线位于50mm外时,用3 × 3 PGMS阵列对天线的球面波转换成平面波进行验证。最后给出了测量结果,与仿真结果吻合较好。设计的PGMS的独特优势在于它的灵活性,允许它很容易弯曲,符合人体的轮廓表面。此外,PGMS提供无缝集成到各种医疗设备和植入物,进一步提高其实用性。这项研究展示了所提出的PGMS在显著提高植入式医疗系统无线电力传输效率方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
期刊最新文献
2024 Index IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Vol. 8 Front Cover Table of Contents IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1