Enhanced Ground-Penetrating Radar Inversion With Closed-Loop Convolutional Neural Networks

Meijia Huang;Jieyong Liang;Ziyang Zhou;Xuelei Li;Zhijun Huo;Zhuo Jia
{"title":"Enhanced Ground-Penetrating Radar Inversion With Closed-Loop Convolutional Neural Networks","authors":"Meijia Huang;Jieyong Liang;Ziyang Zhou;Xuelei Li;Zhijun Huo;Zhuo Jia","doi":"10.1109/LGRS.2024.3505594","DOIUrl":null,"url":null,"abstract":"Traditional ground-penetrating radar (GPR) inversion techniques, while capable of providing high-resolution subsurface imaging, suffer from issues, such as heavy reliance on initial models, high computational demands, and sensitivity to noise and data incompleteness. In contrast, deep-learning-based methods excel in feature extraction and model fitting. However, as a data-driven algorithm, the practical application of convolutional neural networks (CNNs) is limited by the quantity of labeled samples. To reduce the dependence of CNN-based GPR inversion methods on observational data and labels, this project proposes an inversion method based on closed-loop CNNs (CL-CNNs). This approach improves inversion accuracy and reduces the ill-posedness of GPR inversion by modeling both the forward and inverse GPR processes. The CL structure increases the number of features that CNNs can learn from limited labeled samples, while the mutual inversion constraints between the forward and inverse subnetworks help alleviate the ill-posedness of the inversion problem, making the inversion results more consistent with geological principles. Research using synthetic data demonstrates that this method outperforms traditional approaches, as evidenced by enhanced structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR), and a significantly lower mean-squared error (mse), highlighting its advanced performance compared with traditional open-loop CNNs (OL-CNNs). Furthermore, applying this method to real measurement data further validates its effectiveness and practical applicability in engineering contexts, emphasizing its significant practical value.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10766670/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional ground-penetrating radar (GPR) inversion techniques, while capable of providing high-resolution subsurface imaging, suffer from issues, such as heavy reliance on initial models, high computational demands, and sensitivity to noise and data incompleteness. In contrast, deep-learning-based methods excel in feature extraction and model fitting. However, as a data-driven algorithm, the practical application of convolutional neural networks (CNNs) is limited by the quantity of labeled samples. To reduce the dependence of CNN-based GPR inversion methods on observational data and labels, this project proposes an inversion method based on closed-loop CNNs (CL-CNNs). This approach improves inversion accuracy and reduces the ill-posedness of GPR inversion by modeling both the forward and inverse GPR processes. The CL structure increases the number of features that CNNs can learn from limited labeled samples, while the mutual inversion constraints between the forward and inverse subnetworks help alleviate the ill-posedness of the inversion problem, making the inversion results more consistent with geological principles. Research using synthetic data demonstrates that this method outperforms traditional approaches, as evidenced by enhanced structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR), and a significantly lower mean-squared error (mse), highlighting its advanced performance compared with traditional open-loop CNNs (OL-CNNs). Furthermore, applying this method to real measurement data further validates its effectiveness and practical applicability in engineering contexts, emphasizing its significant practical value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deeper and Broader Multimodal Fusion: Cascaded Forest-of-Experts for Land Cover Classification Impact of Targeted Sounding Observations From FY-4B GIIRS on Two Super Typhoon Forecasts in 2024 Structural Representation-Guided GAN for Remote Sensing Image Cloud Removal Multispectral Airborne LiDAR Point Cloud Classification With Maximum Entropy Hierarchical Pooling A Satellite Selection Algorithm for GNSS-R InSAR Elevation Deformation Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1