Structural Representation-Guided GAN for Remote Sensing Image Cloud Removal

Jiajun Yang;Wenjing Wang;Keyan Chen;Liqin Liu;Zhengxia Zou;Zhenwei Shi
{"title":"Structural Representation-Guided GAN for Remote Sensing Image Cloud Removal","authors":"Jiajun Yang;Wenjing Wang;Keyan Chen;Liqin Liu;Zhengxia Zou;Zhenwei Shi","doi":"10.1109/LGRS.2024.3516078","DOIUrl":null,"url":null,"abstract":"Optical remote sensing imagery is often compromised by cloud cover, making effective cloud-removal techniques essential for enhancing the usability of such data. We designed a novel structural representation-guided generative adversarial network (GAN) framework for cloud removal, in which structure and gradient branches are integrated into the network, helping the model focus on the structural representations of ground objects during image reconstruction. Different from previous methods that concentrate on recovering pixel information, we emphasize learning the structural information of remote sensing images. We then utilize error feedback to fuse features from the structural auxiliary branch, guiding the image reconstruction process. During the training phase, synthetic cloud images are used to supervise the optimization of the cloud-removal network, while real cloud images are employed in an adversarial training manner for unsupervised learning to improve the generalization ability of the network. Additionally, multitemporal revisit images from remote sensing satellites are employed as auxiliary inputs, aiding the network to remove thick clouds reliably. We evaluated our framework on a dataset derived from SEN12MS-CR, and the proposed method outperformed classical cloud-removal methods in both objective performance and subjective visual quality. Furthermore, compared to other methods, our approach achieved superior cloud-removal results on real images.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10794750/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical remote sensing imagery is often compromised by cloud cover, making effective cloud-removal techniques essential for enhancing the usability of such data. We designed a novel structural representation-guided generative adversarial network (GAN) framework for cloud removal, in which structure and gradient branches are integrated into the network, helping the model focus on the structural representations of ground objects during image reconstruction. Different from previous methods that concentrate on recovering pixel information, we emphasize learning the structural information of remote sensing images. We then utilize error feedback to fuse features from the structural auxiliary branch, guiding the image reconstruction process. During the training phase, synthetic cloud images are used to supervise the optimization of the cloud-removal network, while real cloud images are employed in an adversarial training manner for unsupervised learning to improve the generalization ability of the network. Additionally, multitemporal revisit images from remote sensing satellites are employed as auxiliary inputs, aiding the network to remove thick clouds reliably. We evaluated our framework on a dataset derived from SEN12MS-CR, and the proposed method outperformed classical cloud-removal methods in both objective performance and subjective visual quality. Furthermore, compared to other methods, our approach achieved superior cloud-removal results on real images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deeper and Broader Multimodal Fusion: Cascaded Forest-of-Experts for Land Cover Classification Impact of Targeted Sounding Observations From FY-4B GIIRS on Two Super Typhoon Forecasts in 2024 Structural Representation-Guided GAN for Remote Sensing Image Cloud Removal Multispectral Airborne LiDAR Point Cloud Classification With Maximum Entropy Hierarchical Pooling A Satellite Selection Algorithm for GNSS-R InSAR Elevation Deformation Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1