{"title":"Effects of tropospheric turbulence on radio signal data passing atmospheric communication links","authors":"I. Bronfman;Y. Ben-Shimol;N. Blaunstein","doi":"10.1029/2023RS007895","DOIUrl":null,"url":null,"abstract":"This paper analyzes the effects of turbulent structures of different sizes on the structural parameter of the refractive index and, consequently, on the scintillation index of radio waves passing through atmospheric channels with fading. The relationships between these parameters are analyzed and discussed not only for weak turbulence, but also for moderate and strong turbulences occurring in the mid-latitude troposphere. By using the relationship between the scintillation index of signal intensity and the well-known Rician K parameter of fast fading, and by obtaining the relationships between the signal data stream parameters, capacity, spectral efficiency, and bit error rate, and K factor of fast fading, we have numerically analyzed various cases of data transmission over tropospheric communication links with fading. This analysis considers the effects of weak, moderate, and strong turbulence on the quality of data transmission over such communication links. The results of this study can be used to improve the design and performance of tropospheric communication links in the presence of turbulence.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 11","pages":"1-19"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10778174/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper analyzes the effects of turbulent structures of different sizes on the structural parameter of the refractive index and, consequently, on the scintillation index of radio waves passing through atmospheric channels with fading. The relationships between these parameters are analyzed and discussed not only for weak turbulence, but also for moderate and strong turbulences occurring in the mid-latitude troposphere. By using the relationship between the scintillation index of signal intensity and the well-known Rician K parameter of fast fading, and by obtaining the relationships between the signal data stream parameters, capacity, spectral efficiency, and bit error rate, and K factor of fast fading, we have numerically analyzed various cases of data transmission over tropospheric communication links with fading. This analysis considers the effects of weak, moderate, and strong turbulence on the quality of data transmission over such communication links. The results of this study can be used to improve the design and performance of tropospheric communication links in the presence of turbulence.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.