{"title":"Flat Supercontinuum Generation From a Phosphorus-Doped Fiber","authors":"Kailong Li;Rui Song;Li Jiang;Zhiyong Pan;Zhiping Yan;Jing Hou","doi":"10.1109/JPHOT.2024.3504277","DOIUrl":null,"url":null,"abstract":"Phosphorus-doped fiber has great advantages in supercontinuum (SC) generation because it can narrow the gap between Raman-related peaks and valleys owing to its special Raman gain. In this paper, a random fiber laser (RFL) structure and a main oscillator power amplifier (MOPA) structure are used to pump a self-made phosphorus-doped fiber. The results show that the output spectrum of the latter structure is more favorable in spectral flatness improvement. The 15 dB bandwidth covers from 690 nm to 2320 nm and the output power is 15.1 W. In the range of 1076 -2010 nm, the spectral intensity fluctuates within 3 dB. To the best of our knowledge, the spectral range and flatness are the best among SC generation based on phosphorus-doped fiber methods, which provide a solution for improving the spectral characteristics of the SC","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-6"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759786","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10759786/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus-doped fiber has great advantages in supercontinuum (SC) generation because it can narrow the gap between Raman-related peaks and valleys owing to its special Raman gain. In this paper, a random fiber laser (RFL) structure and a main oscillator power amplifier (MOPA) structure are used to pump a self-made phosphorus-doped fiber. The results show that the output spectrum of the latter structure is more favorable in spectral flatness improvement. The 15 dB bandwidth covers from 690 nm to 2320 nm and the output power is 15.1 W. In the range of 1076 -2010 nm, the spectral intensity fluctuates within 3 dB. To the best of our knowledge, the spectral range and flatness are the best among SC generation based on phosphorus-doped fiber methods, which provide a solution for improving the spectral characteristics of the SC
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.