{"title":"Asynchronous Message-Passing and Zeroth-Order Optimization Based Distributed Learning With a Use-Case in Resource Allocation in Communication Networks","authors":"Pourya Behmandpoor;Marc Moonen;Panagiotis Patrinos","doi":"10.1109/TSIPN.2024.3487421","DOIUrl":null,"url":null,"abstract":"Distributed learning and adaptation have received significant interest and found wide-ranging applications in machine learning and signal processing. While various approaches, such as shared-memory optimization, multi-task learning, and consensus-based learning (e.g., federated learning and learning over graphs), focus on optimizing either local costs or a global cost, there remains a need for further exploration of their interconnections. This paper specifically focuses on a scenario where agents collaborate towards a common task (i.e., optimizing a global cost equal to aggregated local costs) while effectively having distinct individual tasks (i.e., optimizing individual local parameters in a local cost). Each agent's actions can potentially impact other agents' performance through interactions. Notably, each agent has access to only its local zeroth-order oracle (i.e., cost function value) and shares scalar values, rather than gradient vectors, with other agents, leading to communication bandwidth efficiency and agent privacy. Agents employ zeroth-order optimization to update their parameters, and the asynchronous message-passing between them is subject to bounded but possibly random communication delays. This paper presents theoretical convergence analyses and establishes a convergence rate for nonconvex problems. Furthermore, it addresses the relevant use-case of deep learning-based resource allocation in communication networks and conducts numerical experiments in which agents, acting as transmitters, collaboratively train their individual policies to maximize a global reward, e.g., a sum of data rates.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"916-931"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10755028/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed learning and adaptation have received significant interest and found wide-ranging applications in machine learning and signal processing. While various approaches, such as shared-memory optimization, multi-task learning, and consensus-based learning (e.g., federated learning and learning over graphs), focus on optimizing either local costs or a global cost, there remains a need for further exploration of their interconnections. This paper specifically focuses on a scenario where agents collaborate towards a common task (i.e., optimizing a global cost equal to aggregated local costs) while effectively having distinct individual tasks (i.e., optimizing individual local parameters in a local cost). Each agent's actions can potentially impact other agents' performance through interactions. Notably, each agent has access to only its local zeroth-order oracle (i.e., cost function value) and shares scalar values, rather than gradient vectors, with other agents, leading to communication bandwidth efficiency and agent privacy. Agents employ zeroth-order optimization to update their parameters, and the asynchronous message-passing between them is subject to bounded but possibly random communication delays. This paper presents theoretical convergence analyses and establishes a convergence rate for nonconvex problems. Furthermore, it addresses the relevant use-case of deep learning-based resource allocation in communication networks and conducts numerical experiments in which agents, acting as transmitters, collaboratively train their individual policies to maximize a global reward, e.g., a sum of data rates.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.