Ultra-Compact 1 × 4 Optical Power Splitter Based on Variable-Length Segment Optimized Inverse Design

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Journal Pub Date : 2024-11-25 DOI:10.1109/JPHOT.2024.3505893
Yongchen Wang;Hangming Fan;Zhe Yuan;Junlin Pan;Longquan Dai;Qi Yang;Mengfan Cheng;Ming Tang;Deming Liu;Lei Deng
{"title":"Ultra-Compact 1 × 4 Optical Power Splitter Based on Variable-Length Segment Optimized Inverse Design","authors":"Yongchen Wang;Hangming Fan;Zhe Yuan;Junlin Pan;Longquan Dai;Qi Yang;Mengfan Cheng;Ming Tang;Deming Liu;Lei Deng","doi":"10.1109/JPHOT.2024.3505893","DOIUrl":null,"url":null,"abstract":"Fixed-length segment (FLS) optimization method offers a way to realize the high-efficiency analog inverse design of nanophotonic devices. However, due to the limitation of the variable dimensions and restricted search space, this method can hard to simultaneously achieve large bandwidth, compact size, and efficient performance when dealing with high-dimension design. Here, we propose a highly efficient variable-length segment (VLS) based inverse design method, aiming to solve complex analog inverse design and fully demonstrate the targeted performance. It divides the optimized region into several tapered segments of unequal length and inserts a subwavelength transition waveguide between each tapered segment, which can expand the search space of the algorithm, thus making it easier to obtain a better locally optimal solution. As typical complex proof-of-concept examples, a 1 × 4 power splitter on a silicon-on-insulator (SOI) platform is chosen to demonstrate the validity of our design paradigm. The simulation results show that, compared with the conventional FLS, VLS has about 4–5 times higher efficiency and obtains better optimization performance. In our experiment, the fabricated device has a compact footprint of 9.8 μm × 4.9 μm and is complementary metal oxide semiconductor (CMOS) compatible. The measured insertion loss and the uniformity are less than 0.58 dB and 0.8 dB, respectively. In addition, the tolerances to fabrication errors are also investigated. Our work may find important applications in the advanced design of future nanoscale high-quality optical devices.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767169","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10767169/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Fixed-length segment (FLS) optimization method offers a way to realize the high-efficiency analog inverse design of nanophotonic devices. However, due to the limitation of the variable dimensions and restricted search space, this method can hard to simultaneously achieve large bandwidth, compact size, and efficient performance when dealing with high-dimension design. Here, we propose a highly efficient variable-length segment (VLS) based inverse design method, aiming to solve complex analog inverse design and fully demonstrate the targeted performance. It divides the optimized region into several tapered segments of unequal length and inserts a subwavelength transition waveguide between each tapered segment, which can expand the search space of the algorithm, thus making it easier to obtain a better locally optimal solution. As typical complex proof-of-concept examples, a 1 × 4 power splitter on a silicon-on-insulator (SOI) platform is chosen to demonstrate the validity of our design paradigm. The simulation results show that, compared with the conventional FLS, VLS has about 4–5 times higher efficiency and obtains better optimization performance. In our experiment, the fabricated device has a compact footprint of 9.8 μm × 4.9 μm and is complementary metal oxide semiconductor (CMOS) compatible. The measured insertion loss and the uniformity are less than 0.58 dB and 0.8 dB, respectively. In addition, the tolerances to fabrication errors are also investigated. Our work may find important applications in the advanced design of future nanoscale high-quality optical devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变长段优化反设计的超紧凑1 × 4光分路器
定长段优化方法为实现纳米光子器件的高效模拟逆设计提供了一条途径。然而,由于可变维数和搜索空间的限制,该方法在处理高维设计时难以同时实现大带宽、紧凑尺寸和高效性能。在此,我们提出了一种高效的基于变长段(VLS)的反设计方法,旨在解决复杂的模拟反设计问题,并充分展示目标性能。将优化区域划分为若干不等长的锥形段,并在每个锥形段之间插入亚波长过渡波导,这样可以扩大算法的搜索空间,从而更容易获得较好的局部最优解。作为典型的复杂概念验证示例,选择了基于绝缘体上硅(SOI)平台的1 × 4功率分路器来证明我们设计范例的有效性。仿真结果表明,与传统FLS相比,VLS的效率提高了约4-5倍,并获得了更好的优化性能。在我们的实验中,制作的器件具有9.8 μm × 4.9 μm的紧凑尺寸,并且与互补金属氧化物半导体(CMOS)兼容。测量的插入损耗和均匀性分别小于0.58 dB和0.8 dB。此外,还对加工误差的容限进行了研究。我们的工作可能在未来纳米级高质量光学器件的高级设计中找到重要的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
期刊最新文献
Hybrid Indoor Positioning System Based on LED Array Beam-Shape-Based Angle-of-Arrival Estimation in Free-Space Laser Communication Multiband Radar Using Microwave Photonic Time-Frequency Limiter for Real-Time Detection in Interference Scenarios Single-Polarization Coupler Based on Dual-Core Photonic Bandgap Fiber With Thin Slab Waveguide High Ambient Contrast Ratio and Efficiency LED Display Devices Utilizing Inverted Packaging Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1