Employing an Embedded Renderer as Recognition Tool for Odometry, Map-Building, Navigation, and Localization on Active Sensing Robotics

Park Kunbum;Tsuchiya Takeshi
{"title":"Employing an Embedded Renderer as Recognition Tool for Odometry, Map-Building, Navigation, and Localization on Active Sensing Robotics","authors":"Park Kunbum;Tsuchiya Takeshi","doi":"10.1109/JISPIN.2024.3433671","DOIUrl":null,"url":null,"abstract":"This study proposes a method that employs a renderer as a tool for environmental recognition. In the proposed system, features are extracted from sensors and cameras; the renderer represents scenes in a 3-D space to suit the purpose of the applications, and the applications resample the scenes to achieve their purpose after manipulating the renderer. As an example, this study presents implementation mechanisms of environmental recognition—odometry, map-building, navigation, and localization of automotive indoor robots. This method has a higher computational cost than typical feature-based methods; however, the algorithms are considerably intuitive. Although commercial rendering engines cannot be used as they are, a lightweight rendering engine dedicated to recognition can operate in embedded systems to enable real-time recognition. In addition, this study presents an experiment that corresponds to the simulation of moving robots indoors. In conclusion, this study proposes a change from the perspective of adopting a renderer–a well-established software technology that has been thoroughly investigated and can manipulate space–as an essential tool in the recognition framework.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"275-291"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609476","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10609476/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a method that employs a renderer as a tool for environmental recognition. In the proposed system, features are extracted from sensors and cameras; the renderer represents scenes in a 3-D space to suit the purpose of the applications, and the applications resample the scenes to achieve their purpose after manipulating the renderer. As an example, this study presents implementation mechanisms of environmental recognition—odometry, map-building, navigation, and localization of automotive indoor robots. This method has a higher computational cost than typical feature-based methods; however, the algorithms are considerably intuitive. Although commercial rendering engines cannot be used as they are, a lightweight rendering engine dedicated to recognition can operate in embedded systems to enable real-time recognition. In addition, this study presents an experiment that corresponds to the simulation of moving robots indoors. In conclusion, this study proposes a change from the perspective of adopting a renderer–a well-established software technology that has been thoroughly investigated and can manipulate space–as an essential tool in the recognition framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover Advancing Resilient and Trustworthy Seamless Positioning and Navigation: Highlights From the Second Volume of J-ISPIN IEEE Journal of Indoor and Seamless Positioning and Navigation Publication Information Enhancing Indoor Localization Accuracy in Dense IoT-Integrated 5GNR Networks: Introducing SGNCL for Sensor-Guided NLoS Correction Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1