Embedding material graphs using the electron-ion potential: application to material fracture†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-11-08 DOI:10.1039/D4DD00246F
Sherif Abdulkader Tawfik, Tri Minh Nguyen, Salvy P. Russo, Truyen Tran, Sunil Gupta and Svetha Venkatesh
{"title":"Embedding material graphs using the electron-ion potential: application to material fracture†","authors":"Sherif Abdulkader Tawfik, Tri Minh Nguyen, Salvy P. Russo, Truyen Tran, Sunil Gupta and Svetha Venkatesh","doi":"10.1039/D4DD00246F","DOIUrl":null,"url":null,"abstract":"<p >At the heart of the flourishing field of machine learning potentials are graph neural networks, where deep learning is interwoven with physics-informed machine learning (PIML) architectures. Various PIML models, upon training with density functional theory (DFT) material structure–property datasets, have achieved unprecedented prediction accuracy for a range of molecular and material properties. A critical component in the learned graph representation of crystal structures in PIMLs is how the various fragments of the structure's graph are embedded in a neural network. Several of the state-of-art PIML models apply spherical harmonic functions. Such functions are based on the assumption that DFT computes the Coulomb potential of atom–atom interactions. However, DFT does not directly compute such potentials, but integrates the electron–atom potentials. We introduce the direct integration of the external potential (DIEP) methods which more faithfully reflects that actual computational workflow in DFT. DIEP integrates the external (electron–atom) potential and uses these quantities to embed the structure graph into a deep learning model. We demonstrate the enhanced accuracy of the DIEP model in predicting the energies of pristine and defective materials. By training DIEP to predict the potential energy surface, we show the ability of the model in predicting the onset of fracture of pristine and defective carbon nanotubes.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 12","pages":" 2618-2627"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00246f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00246f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

At the heart of the flourishing field of machine learning potentials are graph neural networks, where deep learning is interwoven with physics-informed machine learning (PIML) architectures. Various PIML models, upon training with density functional theory (DFT) material structure–property datasets, have achieved unprecedented prediction accuracy for a range of molecular and material properties. A critical component in the learned graph representation of crystal structures in PIMLs is how the various fragments of the structure's graph are embedded in a neural network. Several of the state-of-art PIML models apply spherical harmonic functions. Such functions are based on the assumption that DFT computes the Coulomb potential of atom–atom interactions. However, DFT does not directly compute such potentials, but integrates the electron–atom potentials. We introduce the direct integration of the external potential (DIEP) methods which more faithfully reflects that actual computational workflow in DFT. DIEP integrates the external (electron–atom) potential and uses these quantities to embed the structure graph into a deep learning model. We demonstrate the enhanced accuracy of the DIEP model in predicting the energies of pristine and defective materials. By training DIEP to predict the potential energy surface, we show the ability of the model in predicting the onset of fracture of pristine and defective carbon nanotubes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用电子-离子势嵌入材料图形:应用于材料断裂†
机器学习潜力蓬勃发展领域的核心是图神经网络,其中深度学习与物理信息机器学习(PIML)架构交织在一起。在密度泛函理论(DFT)材料结构属性数据集的训练下,各种PIML模型对一系列分子和材料属性的预测精度达到了前所未有的水平。在PIMLs晶体结构的学习图表示中,一个关键的组成部分是如何将结构图的各个片段嵌入到神经网络中。一些最先进的PIML模型采用球谐函数。这样的函数是基于DFT计算原子-原子相互作用的库仑势的假设。然而,DFT不直接计算这些势,而是对电子-原子势进行积分。引入外部势的直接积分(DIEP)方法,更真实地反映了DFT中实际的计算工作流程。DIEP集成了外部(电子-原子)势,并使用这些量将结构图嵌入到深度学习模型中。我们证明了DIEP模型在预测原始和缺陷材料能量方面的准确性。通过训练DIEP预测势能面,我们证明了该模型预测原始和缺陷碳纳米管断裂的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides Commit: Mini article for dynamic reporting of incremental improvements to previous scholarly work Artificial intelligence-assisted electrochemical sensors for qualitative and semi-quantitative multiplexed analyses† Exploring the expertise of large language models in materials science and metallurgical engineering†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1