User behavior and energy-saving potential of electric washing machines

Q2 Energy Energy Informatics Pub Date : 2024-12-04 DOI:10.1186/s42162-024-00444-x
Lu Qiao, Xue Bai, Xiuying Liang, Jianhong Cheng, Yujuan Xia
{"title":"User behavior and energy-saving potential of electric washing machines","authors":"Lu Qiao,&nbsp;Xue Bai,&nbsp;Xiuying Liang,&nbsp;Jianhong Cheng,&nbsp;Yujuan Xia","doi":"10.1186/s42162-024-00444-x","DOIUrl":null,"url":null,"abstract":"<div><p>With the intensification of the global energy crisis and the increase in environmental awareness, energy-saving problems related to household appliances have garnered widespread attention. Here, the usage patterns of electric washing machine users and their energy-saving potential was mainly explored, so as to improve the current situation that the influencing factors of existing research behaviors were not deep enough and the energy saving potential was not specific enough. A questionnaire survey was used to gather information on 20,840 users, including individual characteristics, energy-saving awareness, and usage behavior. The study analyzed the differences in users’ energy-saving awareness and behavior through a series of analysis methods, and evaluated the energy-saving and water-saving potential of electric washing machines. The results showed that user behavior such as washing mode, washing temperature, and the volume ratio of clothes significantly affected on the energy and water consumption of electric washing machines. Individual characteristics of users such as gender, age, educational background, and family income were strongly correlated with their awareness of and decisions made regarding energy conservation. Improving the energy efficiency of electric washing machines and optimizing user purchasing behavior could result in 38,787.54 GWh national energy savings potential, and 6.90 million tons of water-saving potential. This study will help manufacturers and government departments better understand consumers’ usage behavior regarding electric washing machines, which could allow them to modify their market strategies and bolster the promotion and education of energy efficiency labels for electric washing machines. This also could support the nation’s objectives for environmental preservation, water and energy conservation, and the sale of products with lesser energy efficiency.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00444-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00444-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

With the intensification of the global energy crisis and the increase in environmental awareness, energy-saving problems related to household appliances have garnered widespread attention. Here, the usage patterns of electric washing machine users and their energy-saving potential was mainly explored, so as to improve the current situation that the influencing factors of existing research behaviors were not deep enough and the energy saving potential was not specific enough. A questionnaire survey was used to gather information on 20,840 users, including individual characteristics, energy-saving awareness, and usage behavior. The study analyzed the differences in users’ energy-saving awareness and behavior through a series of analysis methods, and evaluated the energy-saving and water-saving potential of electric washing machines. The results showed that user behavior such as washing mode, washing temperature, and the volume ratio of clothes significantly affected on the energy and water consumption of electric washing machines. Individual characteristics of users such as gender, age, educational background, and family income were strongly correlated with their awareness of and decisions made regarding energy conservation. Improving the energy efficiency of electric washing machines and optimizing user purchasing behavior could result in 38,787.54 GWh national energy savings potential, and 6.90 million tons of water-saving potential. This study will help manufacturers and government departments better understand consumers’ usage behavior regarding electric washing machines, which could allow them to modify their market strategies and bolster the promotion and education of energy efficiency labels for electric washing machines. This also could support the nation’s objectives for environmental preservation, water and energy conservation, and the sale of products with lesser energy efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动洗衣机的用户行为与节能潜力
随着全球能源危机的加剧和人们环保意识的增强,家电的节能问题受到了广泛关注。本文主要探讨电动洗衣机用户的使用模式及其节能潜力,以改善现有研究行为的影响因素不够深入,节能潜力不够具体的现状。通过问卷调查收集了20840名用户的信息,包括个人特征、节能意识和使用行为。本研究通过一系列的分析方法分析了用户节能意识和节能行为的差异,并对电动洗衣机的节能节水潜力进行了评价。结果表明,洗涤方式、洗涤温度、衣物体积比等用户行为对电动洗衣机的能耗和用水量有显著影响。用户的性别、年龄、教育背景和家庭收入等个人特征与他们的节能意识和节能决策密切相关。提高电动洗衣机能效,优化用户购买行为,全国节能潜力38787.54 GWh,节水潜力690万吨。本研究有助制造商及政府部门了解消费者对电动洗衣机的使用行为,从而调整市场策略,并加强电动洗衣机能效标签的推广及教育。这也可以支持国家的环保、节水和节能目标,以及低能效产品的销售。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Intelligent information systems for power grid fault analysis by computer communication technology Application of simulated annealing algorithm in multi-objective cooperative scheduling of load and storage of source network for load side of new power system Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk Transmission line trip faults under extreme snow and ice conditions: a case study A photovoltaic power ultra short-term prediction method integrating Hungarian clustering and PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1