A Comprehensive Analysis of Moisture Management and Geometric Properties in Knitted Fabrics for Enhanced Sportswear Performance

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Fibers and Polymers Pub Date : 2024-11-19 DOI:10.1007/s12221-024-00789-w
M. Jesima, P. Kandha Vadivu
{"title":"A Comprehensive Analysis of Moisture Management and Geometric Properties in Knitted Fabrics for Enhanced Sportswear Performance","authors":"M. Jesima,&nbsp;P. Kandha Vadivu","doi":"10.1007/s12221-024-00789-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the moisture management properties of multilayered knitted fabrics for sportswear, incorporating blends of polyester, modal, bamboo, nylon, and Kooltex. The goal is to improve athletic garment comfort and performance by optimizing moisture transport away from the skin. The research investigates 24 multilayered knitted structures created from yarns such as 40Ne modal, bamboo, nylon, and 150 denier polyester including recycled and micro polyester variants. The study finds that absorption rates are significantly affected by fiber type, yarn structure, and fabric density. Higher porosity in the top layer of the fabric generally facilitates more efficient moisture transport. Results show that, in most cases, the top layer's absorption rate exceeds that of the bottom layer, although some structures display exceptions due to differences in stitch density and fabric thickness. Fabrics that combine polyester for moisture transfer with cotton or wool for absorption enhance comfort by effectively wicking sweat away from the body. Statistical analysis reveals a significant correlation (<i>p</i> &lt; 0.05) between stitch density and moisture transport efficiency, with higher stitch densities potentially impeding moisture movement. The results suggest that fabrics combining effective moisture transport, high absorption rates, and suitable structural properties are optimal for sportswear, enhancing comfort and performance during physical activities.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4965 - 4975"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00789-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the moisture management properties of multilayered knitted fabrics for sportswear, incorporating blends of polyester, modal, bamboo, nylon, and Kooltex. The goal is to improve athletic garment comfort and performance by optimizing moisture transport away from the skin. The research investigates 24 multilayered knitted structures created from yarns such as 40Ne modal, bamboo, nylon, and 150 denier polyester including recycled and micro polyester variants. The study finds that absorption rates are significantly affected by fiber type, yarn structure, and fabric density. Higher porosity in the top layer of the fabric generally facilitates more efficient moisture transport. Results show that, in most cases, the top layer's absorption rate exceeds that of the bottom layer, although some structures display exceptions due to differences in stitch density and fabric thickness. Fabrics that combine polyester for moisture transfer with cotton or wool for absorption enhance comfort by effectively wicking sweat away from the body. Statistical analysis reveals a significant correlation (p < 0.05) between stitch density and moisture transport efficiency, with higher stitch densities potentially impeding moisture movement. The results suggest that fabrics combining effective moisture transport, high absorption rates, and suitable structural properties are optimal for sportswear, enhancing comfort and performance during physical activities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高运动服性能的针织物水分管理和几何特性的综合分析
本研究评估了由聚酯、莫代尔、竹材、尼龙和Kooltex混纺而成的运动服装用多层针织物的水分管理性能。目标是提高运动服装的舒适性和性能,优化水分运输远离皮肤。该研究调查了24种多层针织结构,这些结构由40Ne莫代尔、竹子、尼龙和150旦聚酯等纱线制成,包括回收和微聚酯变体。研究发现,纤维类型、纱线结构和织物密度对吸收率有显著影响。织物顶层较高的孔隙率通常有利于更有效的水分输送。结果表明,在大多数情况下,顶层的吸收率超过底层,尽管有些结构由于针迹密度和织物厚度的差异而出现例外。织物结合了聚酯纤维的水分转移和棉或羊毛的吸收,通过有效地吸干汗水从身体增强舒适度。统计分析显示,针迹密度与水分输送效率之间存在显著相关性(p < 0.05),较高的针迹密度可能会阻碍水分的流动。结果表明,结合有效的吸湿性、高吸收率和合适的结构性能的面料是运动服装的最佳选择,可以提高运动舒适性和运动性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
期刊最新文献
Enhancing Nitric Oxide Gas Detection by Tuning the Structural Dimension of Electrospun ZnO Nanofibers Fibers and Polymers Sandwich-Structured Free-Standing Films with Excellent Flame Retardant Performance and Effective Electromagnetic Interference (EMI) Shielding Capability Application of Photochromic Spiroindolinonaphthoxazines in Disperse Dyeing of Polyester: Re-evaluating Process Optimization by Analyzing Degradation Behavior and Photochromic Properties A Statistical Filament-Level Modeling of the Impact Behavior of Single and Multi-layer Woven Fabric A Novel Strategy to Control the Effective Strain Range for Yarn-Based Resistive Strain Sensor by Braiding Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1