New Insights into the Stiffness and Strength of Flax Composites from Tsai’s Modulus and the Area of the Failure Envelope

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Fibers and Polymers Pub Date : 2024-11-19 DOI:10.1007/s12221-024-00779-y
Maria Asun Cantera
{"title":"New Insights into the Stiffness and Strength of Flax Composites from Tsai’s Modulus and the Area of the Failure Envelope","authors":"Maria Asun Cantera","doi":"10.1007/s12221-024-00779-y","DOIUrl":null,"url":null,"abstract":"<div><p>There is a growing trend toward the use of natural fibers as reinforcing materials, with flax being a significant part of this market. The mechanical properties of these polymer composites, like those of synthetic fibers, are governed by parameters and material invariants. The challenge is to minimize these parameters, and to reveal these invariants to make stiffness and strength easily comparable with each other and with other composites, while avoiding excessive complexity. To this end, a simple methodology has been developed using the following parameters: Tsai’s modulus or the trace of the stiffness tensor and the area of the Omni Failure Envelope in stress space. Based on the analysis of significant published experimental data on flax composites, new insights were found. The trace-normalized longitudinal Young modulus is a material property that were found to be 0.77 for tension and 0.67 compression with a coefficient of variation of 5.6% and 15%, respectively. The area of the Omni Failure Envelopes and the strength are linearly related. The use of the proposed parameters and some invariants has been discussed and they are used to compare and rank them with each other and with other composites, including carbon, aramid, and glass fiber-reinforced polymer composites.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4921 - 4934"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12221-024-00779-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00779-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing trend toward the use of natural fibers as reinforcing materials, with flax being a significant part of this market. The mechanical properties of these polymer composites, like those of synthetic fibers, are governed by parameters and material invariants. The challenge is to minimize these parameters, and to reveal these invariants to make stiffness and strength easily comparable with each other and with other composites, while avoiding excessive complexity. To this end, a simple methodology has been developed using the following parameters: Tsai’s modulus or the trace of the stiffness tensor and the area of the Omni Failure Envelope in stress space. Based on the analysis of significant published experimental data on flax composites, new insights were found. The trace-normalized longitudinal Young modulus is a material property that were found to be 0.77 for tension and 0.67 compression with a coefficient of variation of 5.6% and 15%, respectively. The area of the Omni Failure Envelopes and the strength are linearly related. The use of the proposed parameters and some invariants has been discussed and they are used to compare and rank them with each other and with other composites, including carbon, aramid, and glass fiber-reinforced polymer composites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
期刊最新文献
Synthesis of Brilliance Disperse Dyes Derived from Antipyrine and Their Dyeing Ability on Polyester Fabrics for Enhanced Fastness and Color Strength Effective Oil/Water Separation Sorbent Based on Nylon 6,6-Organoclay Nanofiber Mats Anti-dripping Flame Retardancy and Mechanical Properties of Polylactide/Ammonium Polyphosphate/Rayon Fiber Composites A Comprehensive Analysis of Moisture Management and Geometric Properties in Knitted Fabrics for Enhanced Sportswear Performance New Insights into the Stiffness and Strength of Flax Composites from Tsai’s Modulus and the Area of the Failure Envelope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1