Interplay between Hydrogen Bond Network and Entangled Network in Polymers During Stretching Based on Molecular Simulations

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-11-07 DOI:10.1007/s10118-024-3227-0
Jian-Long Wen, Yong-Qiang Ming, Ao-Fei Zhang, Jiang-Long Li, Xiao-Yu Du, Lang Shuai, Yi-Jing Nie
{"title":"Interplay between Hydrogen Bond Network and Entangled Network in Polymers During Stretching Based on Molecular Simulations","authors":"Jian-Long Wen,&nbsp;Yong-Qiang Ming,&nbsp;Ao-Fei Zhang,&nbsp;Jiang-Long Li,&nbsp;Xiao-Yu Du,&nbsp;Lang Shuai,&nbsp;Yi-Jing Nie","doi":"10.1007/s10118-024-3227-0","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical properties of polymers can be regulated by changing the numbers of hydrogen bonds and entanglement points. However, the interplay between hydrogen bond network and entangled network during stretching has not been fully studied. We performed molecular dynamics simulations to investigate the changes of hydrogen bonds and entanglements during stretching. The stretching causes the orientation of local segments, leading to the entanglement sliding and disentanglements at different strain regions. Then, the number of entanglement points keeps constant at first and then decreases with increasing strain. Differently, the orientation of local segments can cause the change of chain conformation, which leads to the breakage of hydrogen bonds. Thus, the number of hydrogen bonds decreases with the increase of strain. Simulation results also demonstrated that the number of hydrogen bonds decreases faster during stretching in systems containing more entanglements. In systems with different hydrogen bond site contents, the initial number of entanglement nodes and its decline range during stretching increase firstly and then decrease with the increase of hydrogen bond site content.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 12","pages":"2069 - 2080"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3227-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical properties of polymers can be regulated by changing the numbers of hydrogen bonds and entanglement points. However, the interplay between hydrogen bond network and entangled network during stretching has not been fully studied. We performed molecular dynamics simulations to investigate the changes of hydrogen bonds and entanglements during stretching. The stretching causes the orientation of local segments, leading to the entanglement sliding and disentanglements at different strain regions. Then, the number of entanglement points keeps constant at first and then decreases with increasing strain. Differently, the orientation of local segments can cause the change of chain conformation, which leads to the breakage of hydrogen bonds. Thus, the number of hydrogen bonds decreases with the increase of strain. Simulation results also demonstrated that the number of hydrogen bonds decreases faster during stretching in systems containing more entanglements. In systems with different hydrogen bond site contents, the initial number of entanglement nodes and its decline range during stretching increase firstly and then decrease with the increase of hydrogen bond site content.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分子模拟的聚合物拉伸过程中氢键网络与纠缠网络的相互作用
聚合物的机械性能可以通过改变氢键和纠缠点的数量来调节。然而,在拉伸过程中,氢键网络与纠缠网络之间的相互作用尚未得到充分的研究。我们通过分子动力学模拟来研究拉伸过程中氢键和缠结的变化。拉伸引起局部片段的取向,导致不同应变区域的缠结滑动和解缠。随着应变的增大,缠绕点数先保持不变,后逐渐减小。不同的是,局部链段的取向会引起链构象的改变,从而导致氢键断裂。因此,氢键数随应变的增加而减少。模拟结果还表明,在纠缠较多的体系中,在拉伸过程中,氢键的数量减少得更快。在不同氢键位点含量的体系中,随着氢键位点含量的增加,初始缠结节点数及其在拉伸过程中的下降幅度先增大后减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Boroxine Crystalline Covalent Organic Frameworks Based Single-ion Quasi-solid-state Conductor in Lithium-ion Battery CO2-Sourced Poly(chloropropylene carbonate) with High Flame-Retardant Performance Influence of the Type of Precipitant on the Structure of Phase-inversion Polyamido-imide Membranes Advancements and Applications of 4D Bioprinting in Biomedical Science Bio-based Epoxy Composites Demonstrating High Temperature Breakdown Strength and Thermal Conductivity for High Voltage Insulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1