Life cycle environmental impacts and costs of water electrolysis technologies for green hydrogen production in the future

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Energy, Sustainability and Society Pub Date : 2024-12-05 DOI:10.1186/s13705-024-00497-6
Jan Christian Koj, Petra Zapp, Christoph Wieland, Klaus Görner, Wilhelm Kuckshinrichs
{"title":"Life cycle environmental impacts and costs of water electrolysis technologies for green hydrogen production in the future","authors":"Jan Christian Koj,&nbsp;Petra Zapp,&nbsp;Christoph Wieland,&nbsp;Klaus Görner,&nbsp;Wilhelm Kuckshinrichs","doi":"10.1186/s13705-024-00497-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>To limit climate change and reduce further harmful environmental impacts, the reduction and substitution of fossil energy carriers will be the main challenges of the next few decades. During the United Nations Climate Change Conference (COP28), the participants agreed on the beginning of the end of the fossil fuel era. Hydrogen, when produced from renewable energy, can be a substitute for fossil fuel carriers and enable the storage of renewable energy, which could lead to a post-fossil energy age. This paper outlines the environmental impacts and levelized costs of hydrogen production during the life cycle of water electrolysis technologies.</p><h3>Results</h3><p>The environmental impacts and life cycle costs associated with hydrogen production will significantly decrease in the long term (until 2045). For the case of Germany, the worst-case climate change results for 2022 were 27.5 kg CO<sub>2eq.</sub>/kg H<sub>2</sub>. Considering technological improvements, electrolysis operation with wind power and a clean heat source, a reduction to 1.33 kg CO<sub>2eq.</sub>/kg H<sub>2</sub> can be achieved by 2045 in the best case. The electricity demand of electrolysis technologies is the main contributor to environmental impacts and levelized costs in most of the considered cases.</p><h3>Conclusions</h3><p>A unique combination of possible technological, environmental, and economic developments in the production of green hydrogen up to the year 2045 was presented.</p><p>Based on a comprehensive literature review, several research gaps, such as a combined comparison of all three technologies by LCA and LCC, were identified, and research questions were posed and answered. Consequently, prospective research should not be limited to one type of water electrolysis but should be carried out with an openness to all three technologies. Furthermore, it has been shown that data from the literature for the LCA and LCC of water electrolysis technologies differ considerably in some cases. Therefore, extensive research into material inventories for plant construction and into the energy and mass balances of plant operation are needed for a corresponding analysis to be conducted. Even for today’s plants, the availability and transparency of the literature data remain low and must be expanded.</p></div>","PeriodicalId":539,"journal":{"name":"Energy, Sustainability and Society","volume":"14 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energsustainsoc.biomedcentral.com/counter/pdf/10.1186/s13705-024-00497-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy, Sustainability and Society","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13705-024-00497-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

To limit climate change and reduce further harmful environmental impacts, the reduction and substitution of fossil energy carriers will be the main challenges of the next few decades. During the United Nations Climate Change Conference (COP28), the participants agreed on the beginning of the end of the fossil fuel era. Hydrogen, when produced from renewable energy, can be a substitute for fossil fuel carriers and enable the storage of renewable energy, which could lead to a post-fossil energy age. This paper outlines the environmental impacts and levelized costs of hydrogen production during the life cycle of water electrolysis technologies.

Results

The environmental impacts and life cycle costs associated with hydrogen production will significantly decrease in the long term (until 2045). For the case of Germany, the worst-case climate change results for 2022 were 27.5 kg CO2eq./kg H2. Considering technological improvements, electrolysis operation with wind power and a clean heat source, a reduction to 1.33 kg CO2eq./kg H2 can be achieved by 2045 in the best case. The electricity demand of electrolysis technologies is the main contributor to environmental impacts and levelized costs in most of the considered cases.

Conclusions

A unique combination of possible technological, environmental, and economic developments in the production of green hydrogen up to the year 2045 was presented.

Based on a comprehensive literature review, several research gaps, such as a combined comparison of all three technologies by LCA and LCC, were identified, and research questions were posed and answered. Consequently, prospective research should not be limited to one type of water electrolysis but should be carried out with an openness to all three technologies. Furthermore, it has been shown that data from the literature for the LCA and LCC of water electrolysis technologies differ considerably in some cases. Therefore, extensive research into material inventories for plant construction and into the energy and mass balances of plant operation are needed for a corresponding analysis to be conducted. Even for today’s plants, the availability and transparency of the literature data remain low and must be expanded.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy, Sustainability and Society
Energy, Sustainability and Society Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
4.10%
发文量
45
审稿时长
13 weeks
期刊介绍: Energy, Sustainability and Society is a peer-reviewed open access journal published under the brand SpringerOpen. It covers topics ranging from scientific research to innovative approaches for technology implementation to analysis of economic, social and environmental impacts of sustainable energy systems.
期刊最新文献
An intervention framework for the adoption of solar home system technology in rural Vhembe district, South Africa Gender-based opportunity structure in the energy sector: a literature review on women’s networking and mentoring “Just” energy? An ecofeminist analysis and critique of a predominant conception of energy Life cycle environmental impacts and costs of water electrolysis technologies for green hydrogen production in the future The role of sense of ownership in rural community mini-grid management: qualitative case study from Tanzania
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1