A Comparative Study of Cotton/PES Knitted Fabrics Produced from Recycled Fiber-Based and Virgin Yarns

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Fibers and Polymers Pub Date : 2024-11-14 DOI:10.1007/s12221-024-00780-5
Elif Yılmaz, Banu Özgen Keleş
{"title":"A Comparative Study of Cotton/PES Knitted Fabrics Produced from Recycled Fiber-Based and Virgin Yarns","authors":"Elif Yılmaz,&nbsp;Banu Özgen Keleş","doi":"10.1007/s12221-024-00780-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study deals with the effects of recycled fiber usage and repeated laundering on air permeability and bursting strength properties of knitted fabrics in three basic fabric structures. For this purpose, recycled and virgin cotton and polyester fibers were used in various combinations in fabric production. Fabrics were subjected to repeated laundering under different temperatures and varying washing cycles and were dried with two different drying methods. It has been determined that knitted fabrics produced from recycled cotton containing polyester yarns give similar results to fabrics produced from virgin fibers in terms of air permeability and bursting strength. It was suggested to use recycled cotton/virgin polyester yarns in the knitted fabric production to achieve fabrics with high air permeability and compatible bursting strength values. Moreover, artificial neural networks were used to predict the air permeability and bursting strength of produced fabrics before and after repeated laundering. The obtained regression values were over 99% for both properties. Finally, it can be said that artificial neural networks could be used to predict air permeability and bursting strength of recycled cotton and PES-based knitted fabrics successfully. The results of this research can help manufacturers to choose the effectual fiber content and knitted fabric construction to achieve the intended performance properties in fabrics made from recycled and virgin cotton and polyester blends.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4951 - 4963"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00780-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

This study deals with the effects of recycled fiber usage and repeated laundering on air permeability and bursting strength properties of knitted fabrics in three basic fabric structures. For this purpose, recycled and virgin cotton and polyester fibers were used in various combinations in fabric production. Fabrics were subjected to repeated laundering under different temperatures and varying washing cycles and were dried with two different drying methods. It has been determined that knitted fabrics produced from recycled cotton containing polyester yarns give similar results to fabrics produced from virgin fibers in terms of air permeability and bursting strength. It was suggested to use recycled cotton/virgin polyester yarns in the knitted fabric production to achieve fabrics with high air permeability and compatible bursting strength values. Moreover, artificial neural networks were used to predict the air permeability and bursting strength of produced fabrics before and after repeated laundering. The obtained regression values were over 99% for both properties. Finally, it can be said that artificial neural networks could be used to predict air permeability and bursting strength of recycled cotton and PES-based knitted fabrics successfully. The results of this research can help manufacturers to choose the effectual fiber content and knitted fabric construction to achieve the intended performance properties in fabrics made from recycled and virgin cotton and polyester blends.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
再生纤维与原纱生产棉/聚砜针织物的比较研究
本文研究了在三种基本织物结构中,使用再生纤维和反复洗涤对针织物透气性和破裂强度的影响。为此,在织物生产中以各种组合方式使用再生棉和原生棉和聚酯纤维。织物在不同温度和不同洗涤周期下反复洗涤,并用两种不同的干燥方法进行干燥。经测定,用含涤纶纱线的再生棉生产的针织物在透气性和破裂强度方面与用原始纤维生产的织物具有相似的结果。建议在针织物生产中使用再生棉/涤原纱,以获得高透气性和相容的抗破强度值的织物。利用人工神经网络对织物反复洗涤前后的透气性和破裂强度进行预测。所得的回归值在99%以上。最后,人工神经网络可以成功地预测再生棉和聚乙烯基针织物的透气性和破裂强度。本研究的结果可以帮助制造商选择有效的纤维含量和针织物的结构,以达到预期的性能,由回收和原始棉和聚酯混纺织物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
期刊最新文献
Enhancing Nitric Oxide Gas Detection by Tuning the Structural Dimension of Electrospun ZnO Nanofibers Fibers and Polymers Sandwich-Structured Free-Standing Films with Excellent Flame Retardant Performance and Effective Electromagnetic Interference (EMI) Shielding Capability Application of Photochromic Spiroindolinonaphthoxazines in Disperse Dyeing of Polyester: Re-evaluating Process Optimization by Analyzing Degradation Behavior and Photochromic Properties A Statistical Filament-Level Modeling of the Impact Behavior of Single and Multi-layer Woven Fabric A Novel Strategy to Control the Effective Strain Range for Yarn-Based Resistive Strain Sensor by Braiding Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1